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Lecture 1: What is the subject of "Thermofluids"?

"Thermo" + "Fluids"
◮ Thermodynamics : the state of a fluid and its use to convert energy.
◮ Fluid mechanics : the static and dynamic behavior of fluids.

A fluid is a generic term encompassing liquids and gases.

Ways in which we use fluids include...
Transport : Things (Aircraft, ships, cars, people) move through a fluid...
Handling : Fluids moving through things (pipes, channels, valleys...)
Energy Conversion : Engines, Fridges, Dams, Wind Turbines...
Environment : Pollution emission and dispersion, climate change..

We solve one or more of the following equations..
Mass : Mass conservation equation...
Momentum : Newton’s 2nd Law
Energy : First Law of Thermodynamics.
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Course Outline by Section.

Section 1 : Tools of the Trade
Revision and expansion of the knowledge we need to build fluid machinery of various
sorts. Groundwork !!

Section 2: Fixed Mass Analysis
Conservation laws for a fixed mass of fluid that has no viscosity (friction) : Energy
conservation (transfer) only. Study how to convert thermal energy to motive work
(engines) using gases (compressible fluids).

Section 3: Inviscid Fixed Volume Analysis
With flow, and again no viscosity. Thus mass, momentum and energy conservation are
important and now defined for a fixed volume. Motion is determined purely by applying
a force (Newtons 2nd Law).

Section 4: Viscous Fixed Volume Analysis
Now consider processes where both viscous and inertial forces are important, with
incompressible fluids. Viscous forces are usually important near walls.
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What is FEEG1003 going to teach you to do...

Aim
Provide an understanding of fundamental aspects of the physics of fluid flow and
energy transfer and to develop tools to analyse simple engineering fluids systems.

Having successfully completed the module..

◮ The properties of thermofluid, methods of analysis, including conservation
principles for mass, momentum and energy.

◮ To analyse a thermofluids problem, decide what the form of the governing
equations are.

◮ Translate a paragraph of text describing a problem into a set of mathematical
equations.

◮ Solve the problem !

To understand the question, define the question mathematically, and then to solve it.
(More detail on this in the Module Specification document on the Module Blackboard
site.)

FEEG1003 : Thermofluids Module Introduction Lecture 1 : Slide 3 / 19 : Page 4



Learning Methods and Materials.

Staff time includes several levels of granularity..

◮ Lectures and videos (∼ 2 per week), to 100s.
◮ Structured Tutorial Sessions (∼ 1 per week), to 10s.
◮ One to one help (1 hour per week, per tutorial group), to 1s.

Your learning activities include..

◮ Directed reading (of lecture material), textbook sections. Video Resources.
◮ Problem solving (workbook questions, tutorial classes).
◮ Practical classes (laboratories).

Course Materials
◮ Course *notes*, these slides.
◮ References to material in textbooks.
◮ homework questions, with answers but without solutions.
◮ Feedback in tutorial sessions, laboratory, recorded solutions.
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Aim of Lectures, Tutorial Sessions, 1-2-1 Time

Lecture Objectives

◮ Provide an introduction and an overview of a subject/physics/phenomena.
◮ Explain where the governing equations come from, what they are.
◮ Make clear what the assumptions are in deriving them.
◮ Provide the toolkits you need to solve problems.

Tutorial Objectives

◮ Train you to set up and solve problems.
◮ Worked solutions will be provided every week by cohort academics.
◮ Learn the tricks of the trade.
◮ Small groups, ask lots of questions !

1-2-1 Objectives

◮ Your opportunity to get help if you are stuck on a problem. Individual help !
◮ Ask the right question, and you will get a good reply.
◮ one hour per week is available.
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Laboratories make Engineering Come to Life..

Engineering is a hands-on subject

◮ This is a difficult subject. Hands on learning, running experiments is fantastic
learning method.

◮ It is also really important that the lecture, tutorial and laboratory focus is
syncronised.

◮ Hands on means small groups is a necessity.

On a cohort of 400-500 this is not easy, and the faculty has invested heavily as follows.

◮ For most experiments we have purchased 12 multi-purpose "benches" onto which
we can run most of the experiments.

◮ Set the 12 benches up for a single experiment, and get the entire cohort through,
in small groups, in a few weeks.

◮ The experiments and the lecture content stay synchronised and each reinforces
the other.

As far as I am aware, this is unique in the UK.

◮ There are 6 different experiments, to support a different aspect of the course.
◮ 1 is a demonstrations.
◮ The lab reports are designed to focus on the physics and avoid too much tedious

report writing.
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Laboratory Details

Lab Subject
L1 Flow Visualization
L2 Ideal Gas laws and Processes
L3 Heat Engines
L4 Hydrostatic Force
L5 Conservation of Energy (Bernoulli)
L6 Conservation of Momentum (Jet Impact)

◮ Each lab should take 1 hour.
◮ Time is tight. You must prepare and read up beforehand.

NOTE: If you miss your lab slot you have no right to another. It is very important to make
use of your allocated lab slots.
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Your expectations, and my expectations..

A 15 Credit Module means 150 hours of your time

◮ Roughly 1/2 is timetabled. The other half is self-study time.
◮ Lectures are very intensive (25 hours) - reading up after the lecture is strongly

recommended.
◮ The lecture slides are your notes - expand on them
◮ Keep trying the problems, some are easy, some are not.
◮ ASK QUESTIONS in your tutorial groups and especially 1-2-1 time.
◮ Emailed queries do not work so well.
◮ Course queries should be directed to me, via blackboard. The question, and my

reply will always be distributed to all students on the course, via blackboard.
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Text Book Recommendations

There is no primary text for this course, there are a vast range available. Here I list some
I think are very good. And one suggestion.

Fluids Texts
◮ Crowe et al. ’Engineering Fluid Mechanics’, 9th ed. (better than 10th). SI version.

Fairly introductory but great clarity. ∼£50 new.
◮ Fox, Pritchard and McDonald, "Introduction to Fluid Mechanics", 7th ed, SI units.

Overall very good. ∼£30.
◮ Cengel and Cimbala, "Fluid mechanics: fundamentals and applications", 2nd ed.

Pretty good, comes with a DVD.

Thermodynamics Texts

◮ Cengel YA and Boles MA, ’Thermodynamics - an engineering approach’, 7th ed.,
SI units, McGraw Hill. - very good. ∼£45.

◮ Rogers and Mayhew also good ∼£65.

Fluid Mechanics + Thermodynamics

◮ Shrimpton JS, An Introduction to Engineering Thermofluids, 2015, ∼ 180 pages,
£10 locally, also on Amazon.
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Academic Staff allocated to this module

Lecturers
◮ John Shrimpton (module lead), Luke Myers, Davide Lasagna, Ivo Peters

Structured tutorial sessions are theme specific

Aero Davide Lasagna, Ivo Peters

Acoustics Alan McAlpine

Civil Luke Myers

Mech Anatoliy Vorobev, Xunli Zhang, Dmitry Bavykin, Dario Carugo

Ship Joe Banks

Laboratories
◮ Luke Myers (organiser), Blair Thornton (Timetabling) and ship science staff (on

the ground)

◮ In addition we have ≈ 20 PhD students to help out in the labs
◮ All exams marked, second marked and moderated by academic staff.
◮ You can find our contact details on the module blackboard site.
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Lectures and Lecture Dates

Semester Dates Lecture Lecture Semester Dates Lecture Lecture
1 (w/c) 1 2 2 (w/c) 1 2
Week 1 1/10/18 (none) (none) Week 18 28/1/19 20 21
Week 2 8/10/18 1 2 Week 19 4/2/19 22 23
Week 3 15/10/18 3 4 Week 20 11/2/19 24 25
Week 4 22/10/18 5 6 Week 21 18/2/19 26 27
Week 5 29/10/18 7 8 Week 22 25/2/19 28 29
Week 6 5/11/18 9 10 Week 23 4/3/19 30 31
Week 7 12/11/18 11 12 Week 24 11/3/19 32 33
Week 8 19/11/18 13 14 Week 25 18/3/19 (none) (none)
Week 9 26/11/18 15 16 Week 26 25/3/19 (none) (none)
Week 10 3/12/18 17 18 EASTER (none)
Week 11 10/12/18 19 (none) Week 27 29/4/19 (none) (none)
XMAS Week 28 6/5/19 (none) (none)
Week 15 7/1/18 (none) (none) Week 29 13/5/19 (exam) (exam)

◮ Students are split into two groups, two lectures per week for each group.
◮ ’Week’ corresponds to the university week.
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Lecture Titles and Lab/CW Synchronization (1/2)

Lecture Lecturer Lab Description
1 JS/IP L1 Course Introduction
2 JS/IP L1 Applied Maths Overview
3 JS/IP L1 Kinetic Theory ♯1
4 JS/IP L1 Kinetic Theory ♯2
5 JS/IP L1 Definition of a Fluid
6 JS/IP L1 Change in Thermofluid Systems ♯1
7 JS/IP L2 Change in Thermofluid Systems ♯2
8 JS/IP L2 Cycles and Heat Engines
9 JS/IP L2 Carnot Cycle: The Impossible Engine
10 JS/IP L2 Practical Engine Cycles: Internal Combustion Engines
11 JS/IP L3 Practical Engine Cycles: Gas Turbine Engines
12 JS/IP L3 Conservation Laws
13 JS/IP L3 Mass Conservation using a Control Volume
14 JS/IP L3 An introduction to Momentum
15 LM The hydrostatic equation
16 LM L3 Hydrostatic force distributions
17 LM L3 Bouyancy Forces
18 JS/IP L3 Dimensional Analysis
19 JS/IP L3 Buckingham Pi Theorem

FEEG1003 : Thermofluids Module Introduction Lecture 1 : Slide 12 / 19 : Page 13



Lecture Titles and Lab/CW Synchronization (2/2)

Lecture Lecturer Lab Description
20 JS/DL Flow Assumptions and Boundary Conditions
21 JS/DL Convective and Diffusive Transport
22 JS/DL Non Dimensional Convection-Diffusion
23 JS/DL Flow Visualization methods
24 JS/DL The Euler and the Bernoulli Equation
25 JS/DL Force- Momentum Equation
26 JS/DL L5 Actuator Disk Theory
27 JS/DL L5 Steady Flow Energy Equation
28 JS/DL L5 Practical Engine Cycles: Gas Turbine Engines (Revisited)
29 JS/DL L5 Steady Mechanical Energy Equation
30 JS/DL L6 Couette Flow
31 JS/DL L6 Pipe Flows, viscous drag, turbulence
32 JS/DL L6 Boundary Layers
33 JS/DL L6 Separation and Pressure Drag
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How to get the most out of this module (1/2)

Learning is hard. And we can’t, won’t, shouldn’t, do it for you. We will teach you how to
learn.

This module works as follows..

Lectures Introduce, Define/Derive and Explain the Fundamental Principles.

Self Study Follow through on the additional reading suggested in the Lectures.

Tutorial Classes Be shown how to read, set up, solve and check workbook questions.

Self Study Try additional workbook questions yourself.

1-2-1 time Get help from your tutorial class academic when you get stuck (1-2-1
time).

You will get stuck. That’s OK. Good even. But ASK for help. Please do not be afraid to
ask. We want to help.

◮ We understand this place can be a big scary place for you. You’re not top of the
class any more.

◮ We understand that you have to adapt your learning. You are lot more
autonomous here.

◮ We are mindful that many of you have come from different education systems and
cultures.

◮ So it is really important that you let us know if you are having problems.
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How to get the most out of this module (2/2)

This module is not easy because..

◮ It communicates knowledge through the language of mathematics
◮ Even with good mathematical fluency, the conceptual ideas need thought
◮ And this conceptual understanding is tested by solving problems

The tutorial classes are important because....

◮ Problem solving is a skill that cannot really be taught
◮ But most of all it requires practice. Lots of it.
◮ We help you get started in the tutorial classes - we go through the process with

you.
◮ It is crucial you then practice on your own.

If you get stuck we’ll help ! 1-2-1 time...

◮ 1-2-1 is dedicated time for you and the academic staff running your tutorial class.
USE IT but ask the right question

◮ Wrong Question : ’I don’t understand thermodynamics, please help’.
◮ Right Question : ’I can’t do question X - I understand A,B,C, have tried XXX and

YYY, what have I missed’.
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Questions covered in Tutorial Sessions.
Tutorial sessions are offered to help students make the transition from solving maths to
forming the problem mathematically.
These are taken directly from the workbook and the following long questions are sug-
gested.

Semester Section . Semester 2 Section .
1 Question 2 Question

Week 1 (no tutorial) Week 18 (Q+A)
Week 2 (ice cube) Week 19 10.4,10.6
Week 3 3.3,3.9 Week 20 9.4,9.8
Week 4 3.13,3.15 Week 21 11.3,11.5
Week 5 5.2,5.4,5.6 Week 22 10.8
Week 6 6.3,6.7,6.8 Week 23 10.5,12.4
Week 7 7.4,7.8 Week 24 12.1(a),12.6
Week 8 9.6,9.14 Week 25 (Q+A)
Week 9 8.5,8.10,8.11 Week 26 (Q+A)
Week 10 4.1,4.2,4.3 EASTER
Week 11 (Q+A) Week 27 (Q+A)
XMAS Week 28 (Q+A)

Week 15 (Q+A) Week 29 (Q+A)

◮ GET INVOLVED. They are your chance to ask "why".
◮ Remember: Watching someone do the question does NOT mean YOU know how

to do it. It will however help you know how to approach questions of the same type.
◮ In your first tutorial slot, you should discuss with your tutor a time/date that is fixed

for that semester where the academic will be in his/her office for you.
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A Wake Up Call (from a few years ago).

◮ The average mark for this module
was 47% for UK students.

◮ The pass mark was 40%.
◮ Looking at the marks distribution,

we see the expected "normal"
distribution around the 50-60
range.

◮ There is a long tail to zero.
◮ You might say "but sir, the module

is too hard".
◮ the Malaysian Students in the

same year got an average of 71

Total Mark(%) Count
0-9 5

10-19 23
20-29 13
30-39 21
40-49 39
50-59 88
60-69 105
70-79 48
80-89 19

90-100 10

The USMC students did all the workbook questions, and asked for more. The UK stu-
dents complained they didn’t have the solutions.
Take Personal Responsibility for your Learning.
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Student Comments, having finished the year.

QUESTION: If you were to retake part I what improvements would
you make based on your experiences in the previous academic year?

◮ "I would make sure I made a summary of all the notes from each week of lectures.
This would make it much easier to revise in the summer."

◮ "I would certainly be more focused and organised in taking notes in lectures and
reading up on things I didn’t understand as due to the hectic nature of the course
of this was not done at the time it was left to the end of the year in the limited
revision time. It was also very easy to fall into the trap of spending all study time
on courseworks and revising for the weekly maths tests instead of actually
learning the material as a constant process."

◮ "Start coursework earlier. Revise earlier (after each lecture)."
◮ "I would try and keep on top of tutorial sheets and things, and work a more 9-5

day, rather than being sporadic."
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Summary of the Lecture

AIM : To learn how to solve problems in thermofluids sufficiently well to pass the module.

You now know..
◮ Broadly the scope of the module.
◮ How it is structured.
◮ The teaching materials we provide and where they are.
◮ The staff support you get in terms of lectures, tutorials, 1-2-1 time.

You know what we are going to do to support you through this module.
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Lecture 2: Applied Maths Overview.

Last Lecture we covered:
◮ Organisation to the module.
◮ What we are going to do for you.
◮ What you need to do for yourself.

This lecture we are going to cover:

◮ An overview of all the mathematical tools required for this module.
◮ Designed to mention things briefly, some you will know already.
◮ The objective is when we are deriving thermofluid equations - you focus on

understanding the physics rather than the maths.
◮ This is a heads up to let you know what is coming.
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Detailed Lecture Content.

List of Material for Todays Lecture

◮ Eulerian coordinate systems.
◮ Scalars and vectors. Points and fields.
◮ Simple vector operators.
◮ Finite and infinitesimal increments.
◮ Differentiation, gradients, total derivatives.
◮ Taylor series.
◮ Partial derivatives.
◮ Closed and open integrals.
◮ Integration in one dimension, surfaces, volumes.

We will probably go faster than you are used to today.
You can go back and watch this lecture again as many times as you need.

FEEG1003 : Thermofluids Applied Maths Overview Lecture 2 : Slide 2 / 16 : Page 22



Eulerian Coordinate Systems.

◮ Coordinate systems measure things, here position-in-space
◮ Eulerian Coordinate systems define displacement relative to an origin.
◮ ’Displacement’ therefore has two information components, ’how far’ and ’what

direction’ (from the origin)
◮ The Coordinate axes define the directions of measurement.

The choice of coordinate system is a decision about how we measure
3D space.

z,x3,3

x,x1,1 y,x2,2

z,3

r,1

θ,2

We will mainly use the Cartesian system, occasionally the Cylindrical Coordinate sys-
tem.
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Scalars and Vectors.

Information Representation

Scalars are an information "packet" that has
one "bit" of info - magnitude : familiar examples
are pressure, temperature.

Vectors are an information "packet" that has two
"bits" of info - magnitude and direction. Each
vector has 3 elements of information - one for
each coordinate direction.

−→e3

−→e2
−→e1

−→
Pp1 p2

p3

Example
Position Vectors in a Cartesian Coordinate System - 3D displacement from the origin

◮ The position vector
−→
P = [x1, x2, x3] or more generally

−→
P = [p1, p2, p3].

◮ Gives direction and distance from the origin.

◮
−→
P = p1

−→e 1 + p2
−→e 2 + p3

−→e 3 - unit vectors defining the direction of each axis.

◮ |−→P | = (p2
1 + p2

2 + p2
3)

1
2 - the distance from the origin to

−→
P - the magnitude of p.

◮ If |−→P | = 1 the vector is terms a unit vector, it has a length of 1 (unit).
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Vector Operators (1/2) : Addition/subtraction/scalar multiplication.
We operate on numbers to produce other numbers

◮ + and - are same for scalar-scalar and vector-vector (no meaning for scalar-vector)
◮ * the same for scalar * vector. Different for vector*vector
◮ Division is not allowed by a vector

Addition/Subtraction:
◮

−→a +
−→
b =

−→
b +−→a = −→c

Multiplication:

◮ K(−→a +
−→
b ) = K−→a + K

−→
b

3

2

−→a

−→
b

−→ca3

b3

c3

a2 b2

c2
Example

◮
−→
P = p1

−→e 1 + p2
−→e 2 + p3

−→e 3,
−→
Q = q1

−→e 1 + q2
−→e 2 + q3

−→e 3

◮
−→
R =

−→
P +

−→
Q = (p1 + q1)

−→e 1 + (p2 + q2)
−→e 2 + (p3 + q3)

−→e 3

◮
−→
R = 2

−→
P = 2p1

−→e 1 + 2p2
−→e 2 + 2p3

−→e 3
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Vector Operators (2/2) : (inner) Dot Product.

The dot product of two vectors how much of one vector is in the
direction of the other

−→
b

−→a

θ

−→a ·
−→
b > 0

−→
b

−→a

θ

−→a ·
−→
b = 0

−→
b

−→a

θ

−→a ·
−→
b < 0

−→a • −→b = a1b1 + a2b2 + a3b3 = |−→a ||−→b |cosθ

(−→a +
−→
b ) • −→c = −→a • −→c +

−→
b • −→c

...because −→e 1 • −→e 1 = 1 and −→e 1 • −→e 2 = 0

Key uses in this module

◮ Used to define force components in a given direction (eg
−→
b a unit vector in the

required direction)
◮ Used also to define the mass flow through a surface when the flow is not normal

to the surface (eg
−→
b a unit vector normal to the surface)
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Scalar and Vector Fields.

(Vector) Velocity Field (ms−1).

−→
U

(Scalar) Velocity Magnitude Field (ms−1).

U = |−→U | = (
−→
U • −→

U )
1
2
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The Importance of Gradients In Thermofluids

The rate at which information changes in space and time defines the
magnitude of the change

◮ Newtons Law F = ma= mdu
dt .

◮ Pressure Gradients : dp
dx .

◮ Thermal Gradients : dT
dx .

r

Gradients are incredibly important in thermofluids - they can be considered driving
forces for things that happen.
The first order derivative is commonly known as a gradient.
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Limits, Infinitesimal and finite increments.

Let us say we have a curve and we want to investigate the change in y with respect to
the change in x.

The aim is to define how to represent a change in y as x nears x1

◮ If all we are interested in is the finite change in y as x moves from 4 to 1, then ∆y
is the symbol used here. These are finite measurable changes.

◮ Sometimes we need to derive equations based on infinitesimal changes, here we
would represent a change in y by δy .

◮ Looking at the graph, as point 4 moves from
4,3.. and on to 1 the change in δy the gradient
gets more accurately represented.

◮ As δy → 0 and δx → 0, at point 1 (say) then
δy
δx → dy

dx - the gradient of y with respect x at a
point.

◮ More formally, dy
dx = limδx→0

δy
δx =

y(x+δx)−y(x)
δx .

◮ This is known as a total derivative. The change
in y is totally defined by the change in x.

x

y

dy
dx

1

2

3

4
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Partial versus Total Derivatives.

The total differential change in f (x, y) when x and y change.
Consider a small part of the surface, where f changes by δf and x and y by δx and δy
δf = f (x+ δx, y+ δy)− f (x, y)

δf =

[

f (x+δx,y+δy)−f (x,y+δy)
δx

]

δx+

[

f (x,y+δy)−f (x,y)
δy

]

δy

As δy → 0 and δx → 0 then

df →
[

∂f
∂x

]

dx+

[

∂f
∂y

]

dy.

∂f
∂x and ∂f

∂y are the partial derivatives of f

with respect to x and y.
The former is at constant y and the latter is
at constant x.
These are used as definitions - you will not
be asked to manipulate these in equations
(but I might!).

f

x y

f(x, y)

dy

x
y

dx

(x, y + dy)

(x+ dx, y)

f(x+ dx, y + dy)
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Taylor Series.
A Taylor series uses information, including first and higher derivatives
at one point, to estimate information at another point.
y(x2) = y(x1) + (x2 − x1)

dy
dx

∣
∣
∣
x1

+
(x2−x1)

2

2!
d2y
dx2

∣
∣
∣
x1

...
(x2−x1)

n

n!
dny
dxn

∣
∣
∣
x1

In theory accuracy improves with the order used.
However this assumes we have accurate estimates of higher order terms.

We use Taylor series to derive equations, and in this
case we take a very small interval.
Because of this we can use only a first order
approximation

y(x2) = y(x1) + (x2 − x1)
dy
dx

∣
∣
∣
x1

1

2

-x x

y

Example

◮ Pressure varies in the x direction as p(x) = 4 + 2x2. Given the pressure at x = 3 is
22 Pa, what is the pressure at x=3.1?

◮ (x2 − x1) = 0.1, dp
dx = 4x. So dp

dx

∣
∣
∣
x=3

= 12

◮ p(x = 3.1) = p(x = 3) + 0.1 ∗ dp
dx

∣
∣
∣
x=3

= 22 + 0.1 ∗ 12 = 23.6
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The Importance of Integration in Thermofluids

Integration allows us to calculate a finite change from many
infinitesimal changes

To provide some meaning consider a piston
compressing a gas.

◮ Energy = Force × distance.
◮ Pressure = Force/Area.
◮ Energy = Pressure × Area × distance.

δW = pAδx = pδV

◮ An infinitesimal change in work (energy) is required
to change the volume of a gas at a given pressure.

The integral effect of these infinitesimal changes results
in W =

∫
δW = p1Aδx1 + p2Aδx2..+ pnAδxn =

∫
pAdx.

V

P

δV

2 1

◮ As written above, this is an indefinite integral - if you integrate it a constant arises
which has to be defined from a boundary condition.

◮ The alternative is to use definite integrals, e.g. W =
∫ V2

V1
pdV - this is however

useless for deriving equations and the former method is preferred.
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Cycle integrals.

When considering the motion of a piston in
a cylinder, it performs a cycle, starting at
one point and returning that point. Plotting
how pressure and temperature change in
the cylinder ensures that the cycle is
closed - it ends where it starts.

This has a special notation

Wnet = A
∫ 2

1 pdx+ A
∫ 1

2 pdx= A
∮

pdx.
V

P

2

1
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How you will use (or not) 1, 2 and 3D integration.

V

P

δV

2 1

1D Integral : Change in x only
Area= W =

∫
dW =

∫
pAdx

x x+ δx/2x− δx/2

δy

δz

2d Integral : Change in y and z here
V̇ =

∫
U(y, z)dA=

∫ ∫
U(y, z)dydz

Ways in which you will use 1,2,3D Integration
1D : You will be asked to define and integrate 1D integrals.
2D : You will be asked to recognize 2D integrals. You will always be able to simply them
to 1D to integrate them.
3D : integrals are used for definitions only. m=

∫
ρdV. If incompressible, then

m= ρ∆V

Example

◮ You are asked to integrate V̇ =
∫

U(y, z)dA, assuming the width of the channel in
the y direction is ∆Y, and the velocity does not vary in the y direction.

◮ This means that we can express dA= ∆Ydzand that U(y, z)dA= U(z)∆Ydzor
∆YU(z)dz. Therefore V̇ =

∫
U(y, z)dA= ∆Y

∫
U(z)dz.
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Working out the net mass flux through a fixed volume

Example

◮ To cement this knowledge, we will
carry out an example of using length
nomenclature, vectors and integration
operations.

we choose a infinitesimal area (δA)

◮ Velocity through δA is −→u
◮ the normal component of that velocity

is −→u • −→n
◮ the infinitesimal mass flow is

δṁ= ρ(−→u • −→n )δA

◮ we sum up all our δṁs, eg
ṁ=

∫
ρ(−→u • −→n )dA

−→u

−→n

δA

For an incompressible fluid, the amount of mass going into the fixed volume must equal
the amount coming out thus,
∫
ρ(−→u • −→n )dA= 0

Is the conservation of mass equation for an incompressible fluid.
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Summary, Further Study, Homework

Lecture Summary

◮ Eulerian coordinate systems.
◮ Scalar and vector points and fields.
◮ Simple Vector operators.
◮ Finite and infinitesimal increments.
◮ differentiation, gradients, Partial and total derivatives.
◮ Taylor series.
◮ The meaning of δ, ∂, d,∆.
◮ Closed and open integrals.
◮ Integration in one dimension, surfaces, volumes.

Suggested Further Reading

◮ Crowe et al., Chapter 5.
◮ Shrimpton, Section 2.1.

Suggested Further Study

◮ Try chapter 2.
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Lecture 3: Kinetic Theory

Last Lecture we covered:
◮ Eulerian coordinate systems.
◮ Scalar and vector points and fields.
◮ Simple Vector operators.
◮ Finite and infinitesimal increments. The meaning of δ, ∂, d,∆.
◮ differentiation, gradients, Partial and total derivatives.
◮ Taylor series.
◮ Integration in one dimension, surfaces, volumes.

This Lecture we are going to cover:

◮ Historical context in understanding of gases.
◮ The Kelvin Scale.
◮ Microscopic (molecular) motion in a gas.
◮ Macroscopic (i.e. pressure, temperature) quantities.
◮ Specific heats, Internal Energy, Enthalpy and Work.
◮ First Law of thermodynamics.

Lecture Warning : This analysis is for a very simple gas. The relationships Cp =
5R/2,Cv = 3R/2 do not apply for ’normal’ gases, like air.
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Brief history of theory and application in thermodynamics.

◮ In 1738 Daniel Bernoulli proposed that gases consist of great number of
molecules moving in all directions. Their impact on a surface causes the pressure
that we feel. What we experience as heat is simply the kinetic energy of their
motion. At this time heat was regarded as a sort of weightless and invisible
"calorific" fluid that flowed when out of equilibrium.

◮ Sadi Carnot, aged 28, in 1824 abstracted the essential features of the steam
engine. This resulted in a model thermodynamic system upon which exact
calculations could be made. Carnot knew that the conduction of heat between
bodies at different temperatures is a wasteful and irreversible process, which must
be eliminated if the heat engine is to achieve maximum efficiency.

◮ In 1845, James Joule reported his best-known experiment, involving the use of a
falling weight, in which gravity does the mechanical work, to spin a paddle-wheel
in an insulated barrel of water which increased the temperature.

◮ James Maxwell (1873) formulated key parts of "kinetic theory", which gave the
proportion of molecules having a certain velocity in a specific range and enabled
macroscopic properties to be defined from molecular motion.

◮ Nikolaus Otto developed the spark ignition engine in 1876. Rudolf Diesel
understood the Carnot cycle, in 1893 defined the compression ignition engine.

◮ Until the 1900’s atoms were considered purely hypothetical constructs. An
important turning point was Einstein’s (1905) work. Made measurable predictions
based on the assumed motion of molecules in gases.
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Early Work on the Nature of Gases (Gas Law and Two Point
Temperature scales).

◮ Boyle’s law (≈ 1662) found that as long as temperature is constant the product of
absolute pressure and volume is constant when a gas is expanded:
pv= p

ρ
= const.

◮ Charle’s law (≈ 1780) found as long as the pressure stays at a constant gas
volume and temperature are directly proportional T

v = ρT = const.
◮ Avagadro (≈ 1811) found out a certain volume of gas at a certain T, P held a

certain number of molecules, NA = 6 × 1023/mol.
◮ Clapeyron combined Charles’s law with Boyle’s law (1834) to produce a single

statement which would become known as the ideal gas law p
ρT = const.

No-one knew what heat (energy) actually was, or that molecules existed. They all
measured temperature by various two-point methods.

◮ Amontons (≈ 1700) discovered that the pressure of a fixed mass of gas kept at a
constant volume is proportional to the temperature. Amontons discovered this
while building an "air thermometer".

◮ Fahrenheit’s mercury thermometer defined a scale 180 points (degrees) between
the freezing point of a brine mixture and the boiling point of water.

In these two point methods the measurement of temperature is relative to some datum.
There is no physical meaning in these scales !
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Lord Kelvin and the one-point temperature scale.

Kelvin noticed..
◮ These are linear for a reasonable range of

V − T space.
◮ If you extrapolate these to lower T they all

cross the V = 0 axis at the same point.
◮ In theory this means that all gases, at some

fundamental Temperature, have zero volume. T

v = 1/ρ

Kelvin supposed..

◮ If a gas volume is defined by the motion of gas molecules, then this temperature
defines when molecules have zero motion.

◮ If molecules has zero motion, then a gas comprising such molecules also has
zero internal energy.

◮ Therefore the Kelvin temperature scale might be related directly to the gas internal
energy.

◮ The Kelvin scale is related to the Centigrade Scale by T(K) = T(degC) + 273.15.

Note : Sometimes you have to use K scale temperatures, and sometimes it does not
matter. It is best to always use K scale temperatures in your calculations.
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Setting up our microscopic molecular system/one particle dynamics.
Consider a cubic box of side L and volume V containing a gas

◮ The simple low pressure gas at T, P.
◮ Each of the N molecules has a mass ma and velocity components ux, uy, uz.

L

x

F

L

L

Simple case first : One molecule, moving in the x-direction only

◮ The impact of that one molecule on one wall of the box normal to that direction.
◮ Particle Mom (Ns) change with LH wall = mom before - mom after =

−maux − (maux) = −2maux.
◮ Therefore force required to stop the wall moving is 2maux.

◮ Number of times per second the wall is hit by this particle is |ux|
2L .

◮ The momentum (kgms−1) change per second (N) on one wall = mau2
x

L .

Therefore the pressure on the wall, due to this one particle is: p = F
A =

mau2
x

LA =
mau2

x
V .
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Pressure due to all the particles: moving in all directions.

In reality each particle is moving in three directions and
u2 = u2

x + u2
y + u2

z

◮ u is the speed of the particle. If we sum over all the N particles in the box :
◮

∑N
n=1 u2

n =
∑N

n=1(u
2
x,n + u2

y,n + u2
z,n) =

∑N
n=1 u2

x,n +
∑N

n=1 u2
y,n +

∑N
n=1 u2

z,n.

◮ There is no preferred direction :
∑N

n=1 u2
x,n =

∑N
n=1 u2

y,n =
∑N

n=1 u2
z,n and..

◮

∑N
n=1 u2

n = 3
∑N

n=1 u2
x,n,

we define the mean KE of the particle speeds as:
ū2 = 1

N

∑N
n=1 u2

n = 3
N

∑N
n=1 u2

x

◮ Remember the pressure on the wall, due to one particle is: p =
mau2

x
V .

◮ So the pressure on one of the walls, from all the particles, moving in all directions

is: p = 2N
3V

(

1
2 maū2

)

.

◮ So, we have the pressure-volume product equal to the mean kinetic energy of the
N particles in our box:

◮ pV = 2N
3

(

1
2 maū2

)

.
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Pressure, Volume, Temperature and Internal energy, per mole.

Relating mean molecular kinetic energy to Temperature
Using a single macroscopic property, temperature to represent the integral effect of
many molecular velocities.
1
2 maū2αT

The proportionality constant (Boltzmann constant), kB (JK−1) relates
molecular kinetic energy (J) to Kelvin (K)
1
2 maū2 = 3

2 kBT

... via pV = 2N
3

(

1
2 maū2

)

gives a form of the gas law....

pV = NkBT.

This tells us the pressure-volume product is a function of T

◮ If the box volume and contents stays the same, the pressure rises linearly with T.
◮ This is exactly what Amontons discovered while building an "air thermometer" in

≈ 1700, but did not know why.
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Pressure, Volume, Temperature and Internal energy, per mass.

Finally we may relate the Boltzmann constant to the Universal Gas Constant (J/molK)
using Avagadros Number (/mol) kB = Ru

NA
and we recover the familiar gas law.

pV = nRuT where n = N
NA

is the mol of gas present.

Starting from the gas law per mole: pV = nRuT: Ru = 8.314kJ/kmolK.

Multiply by the molar mass of the gas: mu = m
n : pV = mun Ru

mu
T = mRT.

Here R is the mass gas constant (J/KgK). This IS dependent on the type of gas since:
R= Ru

mu
.

Finally, dividing both sides of the gas law gives the intensive form of the equation:
p(V/m) = RT to pv= p

ρ
= RT.

This is known as the "ideal gas equation" and is a very good approximation for low
pressure gases. In this module, if you need to use the gas law, you will use this.

Gases that follow this law are known as "ideal gases".
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Gas Heating in a Constant volume (Gas internal energy).

Our box is a constant volume device, if we heated the walls and the molecules picked
up (microscopic) kinetic energy over time the macroscopic energy measure (Kelvin
temperature) would rise. Internal energy of a fluid is defined by the specific heat at
constant volume, e.g.

Eu = N 1
2 maū2 = 3

2 NkBT = 3
2 nRuT = 3

2 mRT= mCVT. As a specific quantity, eu = CVT.

Therefore: CV = 3
2 R. only true for atoms

Formally, CV is defined as the energy required to raise 1 kg (not 1 mol) of gas by 1 K at
constant volume.

CV =

(

∂eu
∂T

)

V
.

Note: It is the specific heat property that defines the specific energy contained in a
material - and is a material property. As we will see later the energy is a process
property.

In reality the specific heats are a function of temperature. We will assume they are
constant in this module.

An ideal gas that has constant specific heats is known as a "perfect gas".
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Gas Specific Heat at Constant Pressure (Gas Enthalpy).

For the constant pressure specific heat, we now imagine our box expands in one
direction when the walls are heated and the molecules pick up speed (as above) to
keep the pressure constant.

Here the gas molecules are using up some of their energy to move the box out as well
as moving faster. The energy expended in moving one face of the box out by δL is:
δW = FδL = pAδL = pδV.

From the Gas Law, at constant pressure, pV = mRT, W = pδV = mRδT.

So, energy added at constant pressure is Eh = mCVδT + mRδT = mCpδT or as a
specific quantity, δeh = CpδT. Since CV = 3R

2 , Cp = 5R
2 . Only true for atoms.

This is the gas enthalpy, and is the sum of the internal energy of the gas and the
energy required to increase the volume of the gas at constant pressure by a given
temperature.

Formally, Cp is defined as the energy required to raise 1 kg (not 1 mol) of gas by 1 K at
constant pressure.

Cp =

(

∂eh
∂T

)

P
.
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Enthalpy, Internal Energy, and the First Law of Themodynamics.

CV =

(

∂eu
∂T

)

V
or eu,2 − eu,1 = eu,12 =

∫ T2
T1

CVdT = CV(T2 − T1).

◮ Heat Transfer per unit mass of any process at constant volume.
◮ This only increases the temperature.

CP =

(

∂eh
∂T

)

P
or eh,2 − eh,1 = eh,12 =

∫ T2
T1

CPdT = CP(T2 − T1).

◮ Heat Transfer per unit mass of any process at constant pressure.
◮ This increases the temperature and does some work on the environment.

Eh = mCVδT + mRδT = mCPδT, and that δW = pδV = mRδT.

◮ Therefore eh,12 = eu,12 + w12: Note we can define specific work in terms of specific
volume.

◮ Specific heats and the mass Gas constant: CP = CV + R.
◮ Another useful parameter is the ratio of Specific Heats γ = CP

CV
.

So if we have a heat transfer into a mass (a system) : Q12 = Eu,12 + W12.

◮ This is the First Law of Thermodynamics - in specific terms q12 − w12 = eu,12.
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Summary and Suggested Reading

Lecture Summary

◮ Historical context in understanding of gases.
◮ The Kelvin Scale.
◮ Microscopic (molecular) motion in a gas.
◮ Macroscopic (i.e. pressure, temperature) quantities.
◮ Specific heats, Internal Energy, Enthalpy and Work.
◮ First Law of thermodynamics.

Suggested Further Reading

◮ Cengel and Boles, Sections 1.8.
◮ Fenn JB, Engines, Energy, Entropy, WH Freeman and Company, San Francisco,

USA, 1982.
◮ Shrimpton, Section 2.7.

Suggested Further Study

◮ Try chapter 3 questions.
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Lecture 4: Kinetic Theory (2/2)

Last Lecture we covered:
◮ Historical context in the understanding of gases.
◮ The Kelvin Scale.
◮ Microscopic (molecular) motion in a gas.
◮ Macroscopic (i.e. pressure, temperature) quantities.
◮ Specific heats, Internal Energy, Enthalpy and Work.
◮ First Law of thermodynamics.

This Lecture we are going to cover :

◮ Why our molecular description of a gas is incomplete or:
◮ Why temperature, pressure, first law does not completely define our gas.
◮ Introduction to entropy from a microscopic point of view.
◮ Maxwell’s Demon and the range of states.
◮ Example of entropy change with no other change.
◮ 3rd Law of Thermodynamics.
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Variables known thus far.

We have some state variables that define the state of a gas.

◮ For a gas, P,T and V (extensive form) or v (intensive form) define the state of a
gas. They are known as state variables.

◮ We are missing one (be examined next).

We have some universal constants, that apply to all gases.

◮ Boltzmann constant kB: relates (microscopic) molecular kinetic energy to
(macroscopic) temperature.

◮ Universal Gas Constant Ru - relates the (microscopic) number of molecules to the
(macroscopic) energy they contain.

We have some material constants, that define the capacity of the gas
to change state:

◮ Cp,Cv,R, γ

◮ remember Cp = 5R/2,Cv = 3R/2,R only applies to noble gases.

However our description of our microscopic molecules in a box is incomplete: our de-
scription of energy requires a measure of its quality as well as its magnitude: entropy.
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Why our macroscopic description of the molecules in a box system is
incomplete.

The problem is the maths doesn’t fit with reality :

◮ Gases will tend to expand into any available space.
◮ Hot gases tend to transfer heat to cooler gases.

We need a variable to define this directionality of real life. It is called entropy.

1. Energy is well behaved conserved quantity we can develop precise conservation
laws for.

2. Entropy cannot be defined precisely, is not conserved and at best, stays constant.

There are far reaching implications of entropy generation in engineering that we will
discover in this course:

Example

◮ The inability to convert all heat energy to work.
◮ The loss of energy in fluid systems due to friction/other irreversible losses.
◮ If we mix two gases together, of two different temperatures, the total energy does

not change, but the entropy increases - and the "energy quality" has reduced,
irreversibly.

We need to define energy quality and well as quantity
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The molecular speed distribution of our molecules in our box as a
function of T.

Temperature represents the mean kinetic
energy of the molecules in our box
It turns out that we can work out exactly the
probable speed distribution of the molecules.
It is known as the Boltzmann distribution.

It has the following properties:

◮ It has a high velocity tail : There is also a low
probability of very high speed molecules
present.

◮ Higher energy distributions have a wider range
of possible velocities and because of this...

◮ The probability that any one molecule will have
a certain velocity is lower for higher energy
distributions.

u

P (u)

1 2 3 4 5 6 7 8 9 10

T1

T2

T3

T3 > T2 > T1

It is this range of possible states that is the key to understanding entropy at a microscopic
level.
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Why we cannot define entropy exactly

Maxwell explained the inexactness of
entropy as follows.
Imagine two compartments with a tiny hole.
Connecting them containing gas at the same
temperature.
He then imagined a demon doorkeeper, letting
through the fast molecules into one compartment,
and slow ones through into the other.
Over time, one compartment would heat up and one
would cool down.
Over short times this might actually happen, but
over long times it never will.

Key point is you can never prove this by considering a single or a few particles.
You have to consider many particles, over a sufficiently long time and claim that reality
is actually only very very likely.
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The molecular speed distribution of our molecules in a box as a function
of V.

Example
Unresisted Gas Expansion

◮ Consider molecules in one half of the box,
where the other half is an empty vacuum.

◮ The partition is removed and the molecules
over time fill the box. How has the state of the
gas changed?

◮ The gas has expanded against a vacuum so no
work has been done. Speed distribution has
not changed.

◮ The box is insulated, there is no heat transfer
and the molecules have lost no internal energy.

◮ Therefore the energy of the molecules has not
changed.

◮ The quality of the energy has however has
degraded because of the loss of pressure.

P1T1 P2 = 0

P3 = P1/2

T3 = T1

t = 0

t > 0

In terms of microscopic "range of possible states" each molecule has more position
states after the partition is removed. If we divide each section into 9 areas, at t = 0
the probability of finding a molecule in any one area is 1 in 9, after it is 1 in 18. This
increases the molecular entropy.
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Definition of microscopic (statistical) entropy.

A definition of microscopic (and statistical) entropy
S= kBlnNS where NS is the number of possible states.

Example

◮ Previously, the two entropies are measured as S1 = kBln9 and S2 = kBln18

◮ The change however is ∆S= kBln2

◮ When gases of two different temperatures mix in the same volume.
◮ When a gas expands in an unresisted manner to increase volume.

◮ The microscopic "range of possible states" therefore has two forms of "state":
velocity and position.

This completes the description of an ideal gas P,V,T,S. In a few lectures we apply this
to real engine efficiency.
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3rd Law of Thermodynamics.

The definition of S= kBlnNS also gives us a fundamental reference
point for gases.

◮ As the temperature of the gas tends to absolute zero then so does the entropy.
◮ This can be understood in terms of the mean thermal speed of the molecules all

tending to a zero state.
◮ Then, the molecules all have the same (zero) speed, and hence all have the same

state. In other words the probability of the molecules having zero speed is 1.
◮ Likewise the gas theoretically occupies zero volume, and therefore the position of

the molecules are all known, Therefore the number of possible position states a
molecule might have is also 1.

◮ Therefore in velocity-position space, there is only one molecular state at absolute
zero, therefore NS = 1 and S= kBlnNS = 0.

◮ This is sometimes known as the Third Law of Thermodynamics. It gives a further
insight into the Kelvin temperature scale.
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Summary and Suggested Reading

Lecture Summary

◮ Why our molecular description of a gas is incomplete or:
◮ Why temperature, pressure, first law does not completely define our gas.
◮ Introduction to entropy from a microscopic point of view.
◮ Maxwell’s Demon and the range of states.
◮ Example of entropy change with no other change.
◮ 3rd Law of Thermodynamics.

Suggested Further Reading

◮ Cengel and Boles, Sections 1.8.
◮ Fenn JB, Engines, Energy, Entropy, WH Freeman and Company, San Francisco,

USA, 1982.
◮ Shrimpton, Sections 2.8.

Suggested Further Study

◮ Can complete chapter 3 questions, worked solution 3.16
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Lecture 5: Definition of a Thermofluid

Last Lecture we covered:
◮ Why our molecular description of a gas is incomplete or:
◮ Why temperature, pressure, first law does not completely define our gas.
◮ Introduction to entropy from a microscopic point of view.
◮ Maxwell’s Demon and the range of states.
◮ Example of entropy change with no other change.
◮ 3rd Law of Thermodynamics.

This lecture we are going to cover:

◮ The difference between a solid and a fluid.
◮ A fundamental look at what a fluid is from a microscale (molecular) viewpoint,

using the simplest fluid - a pure low pressure gas.
◮ Relationship between the microscale and the macroscale.
◮ The origin of key fluid properties seen on the macroscale.
◮ Examination of pressure as an example of microscale/macroscale perspective.
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Solids and Fluids (Liquids and Gases).

◮ Solids have molecules that do not move relative to one another, and the molecules
are very close together and have strong attractive forces between them.

◮ Liquids have molecules close enough together for attractive forces to dominate
and keep a given mass occupying a given volume, but has no preferred shape.

◮ Gases have molecules far apart and they have no attractive forces between them
and expand to fill any available volume, and has no preferred shape.
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Response of Solids and Fluids to a Normal Stress.

A weight on a piston acting in the direction of gravity in two cylinders
For a normal stress, one containing a fluid and one containing an elastic solid . In both
cases the molecules of the material next to the wall stay in contact with their respective
molecules of the wall material.

W W

water
elastic
solid

t = 0

W
W

water
elastic
solid

t ≫ 0

∆z

∆z

Conclusion
Solids and fluids behave in a similar way when subjected to a normal force (more
specifically a normal stress (force per unit area).
A compressive force in the fluid/solid balances the weight on the piston and this is the
equilibrium state, where nothing is moving.
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Response of Solids and Fluids to a Shear Stress.

Two flat large plates separated by a narrow gap
In one case the gap is separated by a viscous fluid, treacle say. The other is our elastic
solid. We now apply a shear force.

The solid behaves as before: gives a little and then acquires a new static equilibrium,
with the stress in the deformed solid balancing the shear force created by the plate
motion.
The fluid however allows the plate to move continuously as long as the shear force is
applied and the equilibrium state is where the plate and the fluid are in continuous
motion. The motion stops only when the force applied to the plates ends.

Conclusion
Solids and fluids behave differently under shear. Shear stresses in the fluid are ONLY
present when the fluid is in motion.
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Continuum Assumption : A "fluid" is an approximation.
Macroscopic average molecular measures
If a molecule weighs a mass M kg, then if there were N molecules in a box of volume
Vm3 then the density of the gas would be ρ = NM

V
In defining a density (or any other fluid property, like pressure, temperature, viscosity,
thermal conductivity) we have made a continuum approximation and we have assumed
our box is the "right size".

◮ If our box was too small, we might not
count enough molecules to get a good
average.

◮ If our box is too big we might not see a
macroscopic change in a fluid
property e.g. temperature/density - all
our molecules are not the same on
average.

ρ

V

continuum assumption
is valid

sample volume
What we are assuming is that if our box is the right size then we have a continuous
material whose average properties (say density) can change smoothly from place to
place. In reality molecules carry the information, and communicate this by undergoing
many collisions.
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Lecture 5: Examples of continuum approximations: using gases.

Let us assume we are interested in changes in some property (temperature say) in
length scales of ≈1 mm, so we need a box of side 1 mm.

First let us assume that we have enough molecules at atmospheric temperature and
pressure at ground level, therefore:

◮ ρ = p
RT.

◮ T = 300K, R= 287J/kgK, V = 10−9m3, p = 105Nm−2: m≈ 10−9kg.

So, if we decided to work at an altitude of 10 km (p ≈ 0.26.105Nm−2, T = 220K), V =
2.4.10−9m3, L = 1.33 mm:

◮ The length scale we can resolve increases slightly.

Or, if we wanted to examine the flow in a microchannel (≈10 microns)...

◮ Our continuum assumption fails - and all of the thermofluids you learn is this
degree no longer applies!!

Generally, the length scales for liquids are not a problem, and also not a problem most
of the time for gases.

The remainder of ALL thermo and fluids knowledge taught in your degree is predicated
on valid assumption here !
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Density (Mass per unit volume) and Pressure Definitions

Density Variations

◮ ρ = m
V . Sometimes we also use specific volume: v = 1

ρ
= V

m.

◮ Often it is defined relative that of water and is (very unfortunately!) called specific
gravity. SG=

ρliquid
ρwater

.

◮ Gases have their density defined by the gas law ρ = p
RT

Pressure Variations
◮ Note p in the above equation is the absolute pressure, i.e. the pressure relative to

a perfect vacuum.
◮ Usually what we measure or use the gauge pressure, which is the pressure

relative to some datum, usually atmospheric pressure, pabs = pgauge+ patm

◮ Pressure in SI units is N/m2 or Pa. Sometimes it is referred to in bar (105Pa)

Temperature

◮ In the gas law, must use K !
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How is pressure used, what is it?

Pressure can be source of much confusion
You need to be aware of the context of it’s use. In the last few slides we have seen
several examples of its use.

Pressure has units of N/m2

z, g

p1 p2=

◮ ρ = p
RT: Here it is absolute scalar property of the fluid, and defines the gas density

along with the gas temperature.
◮ pabs = pgauge+ patm: It can be defined in both relative and absolute terms. The key

is if the fluid can be assumed to be incompressible.
◮ Hydrostatic Pressure. It is often termed a "normal stress", which is a vector

quantity - a force per unit area. This is not true since pressure is a scalar : it has a
magnitude but no direction.

◮ The direction of the force per unit area (stress) termed "pressure" is defined by the
normal of the area through which the pressure is acting, e.g. F = pA.

◮ Be careful: Many people say "force due to pressure...", which is only 1
2 the

information.
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Summary and Suggested Reading

Lecture Summary

◮ The difference between a solid and a fluid.
◮ The Continuum Assumption
◮ Relationship between the microscale and the macroscale.
◮ The origin of key fluid properties seen on the macroscale.
◮ Examination of pressure as an example of microscale/macroscale perspective.

Suggested Further Reading

◮ Crowe et al. Section 3.1-3.2.
◮ Shrimpton, Section 2.5.

Suggested Further Study

◮ try chapter 5.
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Lecture 6: Change in Thermofluid Systems (1/2)

Last Lecture we covered:
◮ The difference between a solid and a fluid.
◮ The Continuum Assumption
◮ Relationship between the microscale and the macroscale.
◮ The origin of key fluid properties seen on the macroscale.
◮ Examination of pressure as an example of microscale/macroscale perspective.

This lecture we are going to cover:

◮ Equilibrium and the Zeroth Law of thermodynamics.
◮ States, Processes, paths.
◮ Quasi-equilibrium assumption for processes.
◮ Non-equilibrium processes and Initial/final states.
◮ Reversible and irreversible processes.
◮ Displacement Work.
◮ Heat and work as Process properties.
◮ P-V diagrams.
◮ Types of Processes, paths.

FEEG1003 : Thermofluids Change in Systems - Definitions Lecture 6 : Slide 1 / 14 : Page 67



Zeroth Law of Thermodynamics.

Some theoretical book-keeping..
....that implicit equilibrium across systems through the environment.

which implies...
If system A is in thermal equilibrium with the environment and system B is in thermal
equilibrium with the environment then system A and B are also in thermal equilibrium.
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Internal Equilibrium, Two Property Rule

Defining (constraining) change so we can measure it
If a system is isolated from its environment and nothing is changing the system (a gas
in this case) is said to be in internal equilibrium.

Take the case of rigid (no work transfer) insulated (no heat
transfer) box containing two compartments (a) containing a
gas and (b) a vacuum, separated by a diaphragm.

◮ System in internal equilibrium in section (a). Nothing in
section (b).

◮ Diaphragm breaks - gas properties (p,T) vary in space
and time, system is not in internal equilibrium.

◮ System again in a new state of internal equilibrium.

(a) (b)

here is a state of dynamic equilibrium between the two sections
Internal equilibrium is a state whereby a fluid property may be defined by a single value
for that system. When a system is in equilibrium - the two property rule is valid.

Example
If we know T and P of a gas, then we know everything, and can always work out ρ
(using the gas law). S relationships to come..
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Other Forms of Equilibrium between System and Environment

Start : a cylinder with a stop
The cylinder gas (system) is in internal
equilibrium since nothing is in motion and
no thermal contact to the environment.

The cylinder insulation is removed
and the stop taken away
The piston starts moving and also heat
transfers through the cylinder walls. Neither
internal, mechanical nor thermal
equilibrium is valid here.

The piston motion stops as does
the net heat flow across the
cylinder wall
The system is in mechanical equilibrium
(no change in the rate of piston motion over
time) thermal equilibrium (zero net heat
transfer across the cylinder wall) and
internal equilibrium (uniform conditions in
the system)

p2 T2

p1 T1

u

Q

p 6= p2

T 6= T1

p1 T1

u = 0

p1 T1

p1 T1
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Terminology : Initial/final states : Process and Path.

Again, trying to describe change
quantitatively

◮ state : A gas in equilibrium.
◮ process : doing something to a gas to

change its state.
◮ initial/final : (states) ..of a process
◮ path : The trajectory in state-space by

the process.

Points to note :
◮ A 2D plot fully describes the process, because of the two property rule.
◮ To specify the process (and define the path) the initial and final states and the

transfers across the system boundary must be defined (last part of this lecture)
◮ Unless we make a further assumption we generally do not know the state of the

system in between the initial and final states.
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Quasi-equilibrium process assumption

Rate of change limiter...
... the system, moving along a process
path from an initial to a final equilibrium
state does so slowly enough to ensure the
internal equilibrium is maintained.

Why do we need this ?
We can apply the two property rule all the
way along the process path.

Example
An engine running at 4000 rpm = 76 rps, or one compression cycle takes ≈0.015 sec.
The pressure information travels at the speed of sound ≈ 340ms−1.
The cylinder stroke is about 0.1 m, so pressure information takes 0.0003 secto get from
the piston to the cylinder head.
This means as the volume changes, the pressure everywhere in the cylinder can be
taken as p(t).
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Energy Transfer is a Path Property

Need to consider energy change of a fluid..
Work Transfer is not a state property (of the fluid), it is a path property (of the process).
So we represent the work done between state 1 and 2 as case W12.

◮ P-V diagrams are very useful for
systems involving volume change of
the working fluid as a function of
pressure: i.e. displacement work:
work moving the system boundary.

◮ Note however if work does follow a
quasi-equilibrium path the process
should be "slow".

◮ The term used most is fully resisted.

V

P

δV

2 1

δV = Aδx : δW = Fδx = pAδx = pδV :
∫

dW =
∫

pdV.

Note :
Remember 1 : State properties are P,V,T,S, work is a process property.
Remember 2 : From the 1st Law (q12 − w12 = eu,12), heat transfer also a path property.
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Reversible and Irreversible Processes.

A reversible process will be able to....
Reverse its trajectory along a path

characteristics of reversible processes
heat transfer : no temperature difference, slow, large areas
motion (work) : zero friction

types of reversible processes
internally reversible : system change is reversible
externally reversible : environment does not change
fully reversible : internal + external

Example
An irreversible quasi-equilibrium work process is the slow compression of a gas in an
insulated piston-cylinder with friction present.
A fully reversible quasi-equilibrium heat transfer process is the very slow expansion of
very large and thin walled frictionless piston-cylinder at constant temperature.
An internally reversible quasi-equilibrium heat transfer process is the constant volume
heating of a cold gas.
This is directly related to entropy generation, which needs to engine efficiency
considerations.
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Examples of Irreversibility and Entropy Generation
A good engineer is an entropy minimiser
Understanding of the fundamental physics and the design of technology that minimises
irreversible entropy generation. !

Examples of irreversible entropy generation in thermofluids

◮ viscous friction (Shear Stresses) in fluid flow - leads to pressure drops in pipes,
drag on objects.

◮ Turbulent flow - much larger pressure drops in pipes, drag on objects.
◮ Heat transfer across a temperature difference.
◮ Unrestrained expansion.
◮ Shock waves in compressible fluids (not covered here).
◮ Mixing of different fluids (not covered here).
◮ Phase change (not covered here).
◮ Chemical Reaction/Combustion (not covered here).

Also attributed to a wide range of more philosophical processes

◮ Information Quality (signal processing, code breaking etc, not covered here!).
◮ Heat Death of the Universe (not covered here!!).
◮ Evolution of Life (not covered here!!!).
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Process Types (1/4) : Isochoric (Constant Volume) heat transfer.

Used to model fast Combustion : Petrol Engines
Typically the gas is heated, increasing the pressure, in a rigid container.

Constant Volume (no work) V1 = V3,
p
T = const

◮ Initial, final states are related by : p1V1
T1

= p3V3
T3

.

◮ Conservation of Energy : Q13 − W13 = Eu,13 or
q13 − w13 = eu,13

◮ Work transfer : W13 = 0

◮ Heat transfer : Q13 = W13 + Eu,13 = mCv(T3 − T1)

◮ or.. q13 = w13 + eu,12 = Cv(T3 − T1)

◮ Q13 = Eu,13 (heat transfer is the internal energy
change)

V

p

1

3

2

T1 = const.

T2 = const.
5

4

Reversibility
The heat transfer occurs over the temperature range: the process is not reversible.
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Process Types (2/4) : Isobaric (Constant Pressure)
Expansion/Compression.

Slow/steady combustion : boilers, gas turbines
Energy (heat) transfer) raises the internal energy and does displacement work. The
temperature rises to maintain the pressure as volume increases.

Constant Pressure, p1 = p2, V
T = const

◮ Initial, final states are related by : p1V1
T1

= p2V2
T2

.

◮ Conservation of Energy : Q12 − W12 = Eu,12 or
q12 − w12 = eu,12

◮ Work transfer : W12 =
∫

dW =
∫

pdV = p(V2 − V1).
or w12 =

∫
dw=

∫
pdv= p(v2 − v1)

◮ Heat transfer : Q12 = W12 + Eu,12 =
mCp(T2 − T1) = p(V2 − V1) + mCv(T2 − T1)

◮ or.. q12 = w12 + eu,12 = Cp(T2 − T1) =
p(v2 − v1) + Cv(T2 − T1)

◮ Q12 = Eh,12 = Eu,12 + p∆V (heat transfer is the
enthalpy change)

V

p

1

3

2

T1 = const.

T2 = const.
5

4

Reversibility
The heat transfer occurs over the temperature range: the process is not reversible.
(friction makes it worse).
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Process Types (3/4) : Isothermal (Constant Temperature)
Expansion/Compression.

Impractically slow expansion : theoretical engine efficiency
benchmarking
Heat transfer must occur over a negligible temperature difference - large areas..

Constant Temperature, T1 = T4 and thus
pV = const

◮ Initial, final states are related by : p1V1
T1

= p4V4
T4

.

◮ Conservation of Energy : Q14 − W14 = Eu,14 or
q14 − w14 = eu,14

◮ Work transfer

:W14 =
∫

dW =
∫

pdV = p1V1
∫ dV

V = p1V1ln

(

V4
V1

)

◮ Heat transfer : Q14 = W14. Note that
Eu,14 = mCv(T4 − T1) = 0

◮ or.. q14 = w14 (heat transfer is the work done)

V

p

1

3

2

T1 = const.

T2 = const.
5

4

Reversibility
All heat transfer occurs at the isotherm temperature: the process is reversible if
frictionless.
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Process Types (4/4 ): Adiabatic (zero heat transfer)
Expansion/Compression.

Expansion occurs in an insulated container
A good approximation for the power and compression strokes in internal combustion
engines.

p-v relationship pvγ = constant, γ = Cp/Cv

◮ Initial, final states are related by : p1V1
T1

= p5V5
T5

.

◮ Conservation of Energy : Q15 − W15 = Eu,15 or
q15 − w15 = eu,15

◮ Work transfer :W15 =
∫

dW =
∫

pdV = p1Vγ
1

∫ dV
Vγ

◮ Heat transfer : Q15 = 0

◮ Conservation of Energy :
−W15 = Eu,15 = mCv(T5 − T1)

V

p

1

3

2

T1 = const.

T2 = const.
5

4

Reversibility
Zero heat transfer: the process is reversible if frictionless.
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Summary and Suggested Reading

Lecture Summary

◮ Equilibrium and the Zeroth Law of thermodynamics.
◮ States, Processes, paths, Initial/final States.
◮ Quasi-equilibrium assumption for processes.
◮ Reversible and irreversible processes.
◮ Heat and work as Process properties.
◮ P-V diagrams.
◮ Types of Processes.

Suggested Further Reading

◮ Cengel and Boles Section 1.6 (internal equilibrium), Section 1.7 (process/path QE
process), Section 1.8 (zeroth law), Section 6.6 (reversible/irreversible process).

◮ Shrimpton, Section 2.9.1-2.9.8.

Suggested Further Study

◮ Try chapter 5 questions, worked solution 5.7
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Lecture 7: Change in thermofluid systems (2/2)

Last Lecture we covered:
◮ Equilibrium and the Zeroth Law of thermodynamics.
◮ States, Processes, paths, Initial/final States.
◮ Quasi-equilibrium assumption for processes.
◮ Reversible and irreversible processes.
◮ Heat and work as Process properties.
◮ P-V diagrams.
◮ Types of Processes.

This lecture we are going to cover:

◮ Macroscopic Entropy as a state variable
◮ Reversibility again.
◮ T-S diagrams of key processes.
◮ TdS equations.
◮ Irreversible change and entropy rise.
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State of knowledge thus far.

A reminder..
◮ We have defined three state variables: T (or eu), p and V (or ρ). Any two of these

define the state of a given mass of gas via the two property rule.
◮ Process variables include the work and energy transfers across the system

boundary.
◮ These, together with an initial and final state, define the path of the process.
◮ Enthalpy is another variable, that represents the internal energy and the

displacement work summed.
◮ These are the results of different types of reversible/irreversible process

operations, we consider 4.
◮ isothermal and adiabatic compression/expansion, and heat transfers at constant

pressure and constant volume.
◮ We also introduced a variable called entropy, and defined it from a microscopic

viewpoint in terms of the number of available states in either velocity or position.

We now discuss macrosopic entropy...
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Two Processes : Isothermal Expansion, Followed by Adiabatic
expansion.

We have two points defined on a P-V diagram, 1 (initial state) and 3
(final state)
We analyze various paths and the energy budget along them

◮ First let us look at the process path
1 → 2 → 3.

◮ This is a reversible isothermal
expansion followed by a reversible
adiabatic expansion.

◮ 1 → 2: Isothermal expansion. Note
also that the heat provided to the gas
is all provided at a single temperature,
T1 = T2 and thus the internal energy
does not change. Q12 = W12.

◮ 2 → 3: Adiabatic expansion:
Eu,23 = −W23.

V

p

T1, T2

T3, T4

1

2

3

4

Q1

Q2

Q3

Summary
During the process 1 → 2 → 3 : Q12 has been supplied to the gas and the internal
energy has changed.
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Two Processes: Adiabatic Expansion, Followed by Isothermal
expansion.

We have two points defined on a P-V diagram, 1 (initial state) and 3
(final state)
We analyze various paths and the energy budget along them

◮ Now let us look at the process path
1 → 4 → 3.

◮ This is a reversible adiabatic
expansion followed by a reversible
isothermal expansion.

◮ 1 → 4: Adiabatic expansion:
Eu,14 = −W14.

◮ 4 → 3: Isothermal expansion. Note
also that the heat provided to the gas
is all provided at a single temperature,
T4 = T3 and thus the internal energy
does not change. Q43 = W43 V

p

T1, T2

T3, T4

1

2

3

4

Q1

Q2

Q3

Summary
During the process 1 → 4 → 3 Q43 has been supplied to the gas and the internal
energy has changed.
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Differences in the process routes 1 → 2 → 3 and 1 → 4 → 3.

Similarities
◮ Paths 1 → 2 → 3 and 1 → 4 → 3 are both reversible.
◮ same start and end at the same points.
◮ same internal energy change.

On paths 1 → 2 → 3 and 1 → 4 → 3:

Differences
◮ The heat transfers are different.
◮ The work transfers are different.
◮ Because the initial and final states are the same irrespective of the path, then the

entropy (a state variable) must also change by a defined amount.

We need a way to describe the entropy change independent of the path.....in terms of
process variables, ie heat and work transfers !
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Macroscopic Entropy definition.
The quantity of heat added divided by the temperature at which it is
added along the path is independent of the path here.
Q43
T3

= Q12
T1

= S43 = S12 = S13

We could choose any number of steps..
S13 =

∑N
n=1

Qn
Tn

=
∫ 3

1
dQ
T

V

p

T1, T2

T3, T4

1

2

3

4

Q1

Q2

Q3

This gives us our entropy definition

◮ Because the variable is independent of the path, it must be a state property.
◮ Thus there are 4 state properties, S,P,V,T that define a gas.
◮ If this is true we must be able to define relationships between them because of the

two property rule.
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Entropy Difference for an ideal gas: TdSequations (1/2)

Analysing the entropy change to a gas in a volume under constant
pressure heating

◮ We transfer a small amount of energy δq and allow the volume to change to
maintain constant pressure.

◮ From our definitions : δq = CpδT and δq = CVδT + pδv

◮ Dividing by T, δq
T = CV

δT
T + p

T δv

◮ Making use of the gas law : δq
T = CV

δT
T + Rδv

v

◮ Integrating:
∫ dq

T = CV
∫ dT

T + R
∫ dv

v or...

◮ s12 = Cv
∫ 2

1
dT
T + R

∫ 2
1

dv
v .

This is known as the first TdSequation it is:
s12 = CV ln T2

T1
+ Rlnv2

v1
.

This is the intensive form - entropy here has units of J/kgK.
It gives us the entropy change in terms of the change in two state variables T and v.
The extensive form is S12 = mCV ln T2

T1
+ mRlnV2

V1
.
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Entropy Difference for an ideal gas: TdSequations (2/2)

For the 2nd TdS equation we use the enthalpy definition
Starting from s12 = CV ln T2

T1
+ RlnV2

V1
, we can employ the enthalpy relation eh = eu + pv.

Where...deh = deu + d(pv) = deu + pdv+ vdp.
Rearranging this equation deh − vdp= deu + pdv.
We note that since deh = CpdT and deu = CvdT. Dividing by T..
Rearranging this equation CpdT

T − v
T dp= Cv

dT
T + p

T dv.
Making use of the gas law : CpdT

T − R
p dp= Cv

dT
T + R

v dv.
The RHS is TdSfrom the first TdS equation.

So the 2nd TdSequation is: s12 = CV ln T2
T1

− Rlnp2
p1

.

Summary

◮ First TdSEquation: s12 = CV ln T2
T1

+ RlnV2
V1

or Tds= deu + pdv.

◮ Second TdSEquation: s12 = Cpln T2
T1

− Rlnp2
p1

or Tds= deh − vdp.

Key Points

◮ We used the entropy definition and the 1st Law and the enthalpy definition to
derive the TdSequations

◮ They apply to both reversible and irreversible processes, and not just the
reversible example given.
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Process Types (1/4) : Isochoric (Constant Volume) heat transfer.

Used to model fast Combustion : Petrol Engines
Typically the gas is heated, increasing the pressure, in a rigid container.

Constant Volume (no work) V1 = V2,
p
T = const

◮ Initial, final states are related by : p1V1
T1

= p2V2
T2

.

◮ Conservation of Energy : Q12 − W12 = Eu,12 or
q12 − w12 = eu,12

◮ W12 = 0,Q12 = mCV(T2 − T1).

◮ First TdSEquation: S12 = mCV ln T2
T1

+ mRlnV2
V1

◮ 1st TdSEquation: S12 = mCV ln T2
T1

.
S

T

2 22

21

cv

cp

Reversibility
The heat transfer occurs over the temperature range: the process is not reversible.

FEEG1003 : Thermofluids Change in Systems - Entropy Lecture 7 : Slide 9 / 18 : Page 89



Process Types (2/4) : Isobaric (Constant Pressure)
Expansion/Compression.

Slow/steady combustion : boilers, gas turbines
Energy (heat) transfer) raises the internal energy and does displacement work. The
temperature rises to maintain the pressure as volume increases.

Constant Pressure, p1 = p2, V
T = const

◮ Initial, final states are related by : p1V1
T1

= p2V2
T2

.

◮ Conservation of Energy : Q12 − W12 = Eu,12 or
q12 − w12 = eu,12

◮ Work transfer : W12 =
∫

dW =
∫

pdV = p(V2 − V1).

◮ Heat transfer : Q12 = W12 + Eu,12 =
mCp(T2 − T1) = p(V2 − V1) + mCv(T2 − T1)

◮ Second TdSEquation: S12 = mCpln T2
T1

− mRlnp2
p1

◮ 2nd TdS Equation: S12 = mCpln T2
T1

.

S

T

2 22

21

cv

cp

Reversibility
The heat transfer occurs over the temperature range: the process is not reversible.
(friction makes it worse).
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Process Path Types (3+4 of 4): Adiabatic + Isothermal volume
increase/decrease.

Isothermal Change
Change is at constant temperature.

W12 = p1V1ln

(

V2
V1

)

Q12 = W12 because of zero change in
internal energy.
S12 = mRlnV2

V1
= Q12

T1
.

All heat transfer occurs at the isotherm
temperature: the process is reversible if
frictionless.

Adiabatic Change
zero heat transfer during the change.
Q12 = 0;S12 = 0, if zero friction.

S

T

2 22

21

cv

cp
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Process Terminology definitions.

4 Types of Change :
For processes where one of the 4 state variables P,V,T,Sstays constant the following
terminology is appropriate.

◮ Isobaric - constant pressure.
◮ Isochoric - constant volume.
◮ Isothermal - constant temperature.
◮ Isentropic - constant entropy.

Important Points to Remember

◮ Of these isobaric and isochoric process cannot be reversible because the heat
transfer between system and environment occurs over a temperature difference.

◮ They are not isentropic because of the heat transfer and because of the
irreversibility.

◮ The isothermal process is reversible because the heat transfer occurs over a
negligible temperature difference.

◮ However because of the heat transfer the process cannot be isentropic.
◮ The adiabatic process is isentropic if it is reversible.
◮ Any other losses (friction for instance) are an irreversible change, they create

entropy.
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Using P-V and T-S diagrams.

For processes integrals in P-V and T-S diagrams have direct physical
interpretation.

W12 =
∫

dW =
∫

pdV.

◮ W > 0 for dV > 0 (p > 0
always).

Q12 =
∫

dQ=
∫

TdS.
◮ Note Q > 0 for dS> 0

(T > 0 always).
V

p

1

3

2

T1 = const.

T2 = const.
5

4

S

T

2 22

21

cv

cp

Sign Convention during a single process

◮ Changes in P,V,T,Sare due to Q and W transfers between our system and the
environment defined by Q12 − W12 = Eu,12. Q > 0 when adding heat to the
system. W > 0 when system does the work.

◮ Changes in P,V,T,S for any single process of the system may be > 0 or < 0
because W,Q change likewise.

◮ When considering cycles, change in Stotal ≥ 0 only is possible (we have to
consider the environment entropy change as well !).
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Example 1 : Entropy as an energy quality measure : Heat Flow
between two chambers.

We have an insulated rigid chamber with a partition separating two
equal sub-volumes.

◮ At time 1 the fluid in one volume is hot, at temperature TH ,the other cold at a
temperature TC.

◮ At time 2 both sub-volumes have the same temperature due to heat transfer
through the partition.

From time 1 to 2
◮ No work transfer. No heat transfer.
◮ Therefore from the first law the internal energy in

the chamber has not changed.
◮ A heat transfer has occurred between sub-volumes

and if we consider the each sub-volume a separate
system (a and b) then the initial reversible entropy
change in each system is.

◮ Sa,12 = − Q
TH

,Sb,12 = Q
TC

,

S12 = Sa,12 + Sb,12 = − Q
TH

+ Q
TC

> 0.

Q

TH TC

(a) (b)

Summary
Zero Energy Change, but Entropy has increased. Our ’extractable’ energy is less.
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Example 2 : Entropy as an energy quality measure : Pressure leakage
between two chambers.

we have the same rigid container and this time the initial state 1 is the
pressure in the two sub-volumes is different (pa = 2pb say)

◮ No work transfer. No heat transfer.
◮ Internal energy in the chamber has not changed.
◮ The entropy change in each system is

characterized by the pressure change.
◮ paV = maRT, pbV = mbRT,ma = 2mb, p22V =

(ma + mb)RT.

◮ ma = 2mb, p2 = 3maRT
4V , p2

pa
= 3

4 : Final pressure goes
down w.r.t. pa.

◮ mb = ma
2 , p2 = 3maRT

2V , p2
pb

= 3
2 : Final pressure goes

up w.r.t. pb.

◮ Sa,12 = −2mbRln

(

p2
pa

)

,Sb,12 = −mbRln

(

p2
pb

)

.

◮ S12 = Sa,12+Sb,12 = −Rmb

[

2ln

(

p2
pa

)

+ln

(

p2
pb

)]

> 0

(check it!).

pa pb

(a) (b)

Summary
Entropy increases, energy quality decreased, lost useful energy forever.
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Example 3 : The molecular speed distribution of our molecules in our
box as a function of V.

Consider molecules on one half of box,
where the other half is a empty vacuum

◮ The partition is removed and the molecules over
time fill the box.

◮ They are very very unlikely to ever go back - the
process is irreversible.

◮ The gas has expanded against a vacuum so no
work has been done.

◮ The box is insulated, there is no heat transfer and
the molecules have lost no internal energy.

◮ The macroscopic quality of the energy has however
has degraded because of the loss of pressure.

P1T1 P2 = 0

P3 = P1/2

T3 = T1

t = 0

t > 0

In terms of microscopic "range of possible states" each molecule has more position
states when the partition is removed. If we divide each section into 9 areas, at t = 0
the probability of finding a molecule in any one area is 1 in 9, after it is 1 in 18. This
increases the molecular entropy S= kBlnNS.
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Relating the microscopic and the macroscopic entropy definitions

Macroscopic Entropy Change - 1st TdS
equation

◮ S12 = mRlnV2
V1

= mRln2.

◮ Recall kB = Ru
NA

and mu = m
n so:

◮ S12 = mRln2 = N
NA

Ruln2 = NkBln2 > 0

The molecular entropy definition was
S= kBlnNS

◮ S1 = kBln9, S2 = kBln18

◮ S12 = NkBln2 > 0

P1T1 P2 = 0

P3 = P1/2

T3 = T1

t = 0

t > 0

Each of the N molecules have picked up kBln2 of entropy by increasing the number of
possible states by ln2.
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Summary and Suggested Reading

Lecture Summary

◮ Macroscopic Entropy as a state variable.
◮ T-S diagrams of key processes.
◮ TdS equations.
◮ Irreversible change and entropy rise.
◮ A link between microscopic and macroscopic entropy.

Suggested Further Reading

◮ Cengel and Boles - Chapter 7 (entropy)
◮ Cengel and Boles - Section 7.4 (T-S diagams)
◮ Cengel and Boles - Section 7.7 (TdS equations)
◮ Cengel and Boles - Section 6.6 (irreversible change)
◮ Shrimpton, Section 2.9.9 - 2.9.13

Suggested Further Study

◮ Can complete chapter 5.
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Lecture 8: Cycles and Heat Engines

Last Lecture we covered:
◮ Macroscopic Entropy as a state variable.
◮ T-S diagrams of key processes.
◮ TdS equations.
◮ Irreversible change and entropy rise.
◮ A link between microscopic and macroscopic entropy.

This lecture we are going to cover:

◮ Cycles : a sequence of processes.
◮ Heat Engines
◮ Thermal Reservoirs and heat rejection
◮ Efficiency of heat engines.
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Reminder: Isochoric (Constant Volume) pressure increase/decrease

Used to model fast Combustion : Petrol Engines
Typically the gas is heated, increasing the pressure, in a rigid container.

Constant Volume (no work) V1 = V3,
p
T = const

◮ Initial, final states are related by : p1V1
T1

= p2V3
T3

.

◮ Conservation of Energy : Q13 − W13 = Eu,13 or
q13 − w13 = eu,13

◮ W13 = 0,Q13 = mCV(T3 − T1).

◮ First TdSEquation: S13 = mCV ln T3
T1

+ mRlnV3
V1

◮ 1st TdSEquation: S13 = mCV ln T3
T1

.

Reversibility
The heat transfer occurs over the temperature range:
the process is not reversible.

V

p

1

3

2

T1 = const.

T2 = const.
5

4

S

T

2 22

21

cv

cp
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Reminder: Isochoric (Constant Pressure) pressure increase/decrease

Slow/steady combustion : boilers, gas turbines
Energy (heat) transfer) raises the internal energy and does displacement work. The
temperature rises to maintain the pressure as volume increases.

Constant Pressure, p1 = p2, V
T = const

◮ Initial, final states are related by : p1V1
T1

= p2V2
T2

.

◮ Conservation of Energy : Q12 − W12 = Eu,12 or
q12 − w12 = eu,12

◮ Work transfer : W12 =
∫

dW =
∫

pdV = p(V2 − V1).

◮ Heat transfer : Q12 = W12 + Eu,12 =
mCp(T2 − T1) = p(V2 − V1) + mCv(T2 − T1)

◮ Second TdSEquation: S12 = mCpln T2
T1

− mRlnp2
p1

◮ 2nd TdS Equation: S12 = mCPln T2
T1

.

Reversibility
The heat transfer occurs over the temperature range:
the process is not reversible. (friction makes it worse).

V

p

1

3

2

T1 = const.

T2 = const.
5

4

S

T

2 22

21

cv

cp
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Reminder : Adiabatic+Isothermal volume increase/decrease

Isothermal Change
Change is at constant temperature.

W12 = p1V1ln

(

V2
V1

)

Q12 = W12 because of zero change in
internal energy.
S12 = mRlnV2

V1
= Q12

T1
.

All heat transfer occurs at the isotherm
temperature: the process is reversible if
frictionless.

Adiabatic Change
pvγ = Const.
zero heat transfer during the change.
Q12 = 0;S12 = 0, if zero friction.
−W12 = Eu,12

V

p

1

3

2

T1 = const.

T2 = const.
5

4

S

T

2 22

21

cv

cp
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Equations governing single closed processes

Key Equations :

◮ Conservation of Energy: Q12 − W12 = E12

◮ Gas Law: P1V1
T1

= P2V2
T2

◮ Entropy definition : S12 = mCv ln T2
T1

+ mRln V2
V1

, S12 = mCp ln T2
T1

− mRln P2
P1

◮ W12 =
∫

dW =
∫

pdV : Note W > 0 for dV > 0 (P > 0 always)
◮ Q34 =

∫
dQ=

∫
TdS: Note Q > 0 for dS> 0 (T > 0 always)

V

p

1

3

2

T1 = const.

T2 = const.
5

4

S

T

2 22

21

cv

cp
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A cycle of processes
Consider a two process cycle - start,end at same point.

p

V

1

2

W12

p

V

1

2

W21

p

V

1

2

Wnet

In the simple cycle shown above..

◮ W12 is + ve (V increases) and W21 is -ve. The net work is the area enclosed by the
cycle.

◮ The net work is clearly > 0 and for clockwise cycles this is always the case.
◮ The same is true on a T-S diagram, where the net heat transfer is defined by the

area enclosed on that cycle.

Important Point

◮ Initial + final points on the cycle are the same, the cycle internal energy is zero.
◮ Leading to the first law for cycles to be

∑
Q − ∑

W = 0.
◮ Since Wnet = Qnet, area on T-s and P-v diagrams show the same thing.
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Heat engines (things that produce work from heat)

A heat engine has the following characteristics :

◮ They access heat energy from a high
temperature source.

◮ They produce/use some work
◮ They operate on a cycle
◮ They access heat energy to a low

temperature source.

Examples are:
◮ Internal combustion engines
◮ Steam/Gas turbines
◮ Refrigerators
◮ Heat Pumps

pump condensor

boiler

turbine
Wout

Qin @Th

Qout @TcWin

Up till now we have only examined single processes, and not concerned ourselves with
the impact of dumping heat to the environment.
As we shall see, it is crucial for good efficiency.
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2nd Law of thermodynamics : Kelvin-Planck Statement

Heat engines run cycles that seem
to require us to reject waste
energy to a heat sink.

◮ This leads to several consequences
enshrined in one of the more useful
interpretations of the 2nd Law.

◮ The Kelvin-Planck statement.
◮ It is impossible for any heat engine to

receive heat from a single thermal
reservoir and produce an equivalent
amount of work.

◮

◮ A cyclically operating engine must
reject heat to a low temperature ‘sink’
as well as receive heat from a high
temperature source

◮ Which means no heat engine can be
100% efficient

pump condensor

boiler

turbine
Wout

Qin @Th

Qout @TcWin
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Example : 2nd Law Violation

In the above sketch, 2nd Law is violated because there is no low temperature sink for
this engine cycle.
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Heat Engines and Thermal Reservoirs

To calculate efficiency, we only need the energy transfers and the
work known

◮ “E”is the entire heat engine, the system boundary is the circle around the E
◮ Th and Tc are the hot and cold thermal reservoir (a very large thermal mass

ensuring that whatever heat is added/taken from it the temperature stays the same
◮ Qh and Qc are the heat transfers to/from the hot and cold reservoirs respectively.
◮ W is the net work crossing the system boundary.

pump condensor

boiler

turbine
Wout

Qin @Th

Qout @TcWin

W

Tc

Th

E

Qh

Qc

A key simplification over the 1st Law is that the signs on Q and W are ignored here, the
direction of heat and work flow is defined by arrows on the diagram.
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Heat Engine Efficiency

Efficiency is what you get in terms of what you pay for

◮ In terms of heat engines :‘what you get is the
work output, W

◮ what you pay for is the energy extracted from
the high temperature reservoir.

◮ Note that the energy donated to the cold
reservoir is not counted, it is wasted energy

◮ Heat Engine Thermal Efficiency: ηth = W
Qh

◮ For a cycle,
∑

W =
∑

Q and therefore
W = Qh − Qc

◮ Therefore ηth = Qh−Qc
Qh

= 1 − Qc
Qh

W

Tc

Th

E

Qh

Qc

Notes
The larger Qh can be and the smaller Qc can be the more efficient our heat engine will
be.
This is a theoretical limit-practical inefficiencies, eg friction add to this.
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Heat Engine Energy Quality

The heat engine efficiency of any engine is defined..
ηth = 1 − Qc

Qh
.

The efficiency of a reversible engine is defined..
by ONLY on the hot and cold reservoir temperatures.
It does not depend on the type of processes, the working
fluid or anything else.
the important relation is,
ηth,rev = 1 − Tc

Th

Example
This instantly gives an idea of energy quality. If the hot and
cold T are 1200K and 300K
ηth,rev = 0.75, reduce the hot T to 600K and ηth,rev = 0.50.
Clearly some energy sources are more efficiently used than
others.

Carnot Efficiency
The reversible heat engine efficiency is sometimes known as
the Carnot Efficiency.
It is the efficiency that all engines aspire to !

W

Tc

Th

E

Qh

Qc
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Example of a Reversed Heat Engine

evaporator

condensor

expansion
valve

compressor

∼1 bar
-25◦C

∼1 bar
-20◦C

20◦C
8 bar

60◦C
8 bar

Qh (kitchen air)

Qc (fridge air)

W

Note this is an example only : we do not cover phase change systems in this course.
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Reversed Heat Engine Efficiency

We can’t call it efficiency
Reversed heat engines use work to move heat from
a cold to a hot reservoir.

Remember efficiency is what you get in terms of
what you pay for.

“What you pay for” is obvious : the electrical work to
run the engine.

What we get depends on the desired outcome of
the engine.

ALSO :“efficiencies” here can be > 1, therefore we
call this the called Coefficient of Performance

Heat Pumps : The useful energy is the hot heat flow
(to a house) : COPh = Qh

W

Refridgerators : The useful energy is the cold heat
flow : COPr =

Qc
W
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Summary of this Lecture/Suggested Reading

Lecture Summary

◮ Cycles : a sequence of processes.
◮ Description of a spark ignition engine cycle and the model system analogue.
◮ Heat Engines
◮ Thermal Reservoirs and heat rejection
◮ Efficiency of heat engines.

Suggested Further Reading

◮ Cengel and Boles : chapter 9

◮ Shrimpton section 3.1 − 3.7

Suggested Further Study

◮ Try chapter 6 questions, worked solution 6.23
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Lecture 9: The Carnot Cycle: The Impossible Engine

Last Lecture we covered:
◮ Cycles : a sequence of processes.
◮ Description of a spark ignition engine cycle and the model system analogue.
◮ Heat Engines
◮ Thermal Reservoirs and heat rejection
◮ Efficiency of heat engines.

This lecture we are going to cover:

◮ Introduction of the Carnot cycle
◮ Why it is the most efficient cycle possible and a comparator to real engine cycles.
◮ Demonstration of energy quality and comparison of Carnot efficiency to real

engines.
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Building an impossible engine...

The Carnot Engine is...

◮ Fully reversible
◮ Consists of 4 processes.
◮ It has a frictionless piston-cylinder arrangement where

the cylinder walls are perfectly insulated.
◮ The cylinder head has a removable perfect insulation.
◮ It may be replaced by a heat source a heat sink.

It is not a practical engine

◮ A theoretical engine - the most efficient any heat engine
can possibly be.

◮ Understanding why a Carnot heat engine is efficient is
to understand how practical heat engines have losses.

◮ And then add real losses that are not the mechanical
practicalities of friction, leaks etc.

TDC

BDC

intake exhaust

bore

piston
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Processes of a Carnot Engine.

4 processes..

◮ Process 12: Reversible isothermal
compression : Heat Sink in place on
cylinder head.

◮ Process 23: Reversible adiabatic
compression : insulated cylinder head.

◮ Process 34: Reversible isothermal
expansion : Heat Source in place on
Cylinder head

◮ Process 41: Reversible adiabatic
expansion : insulated cylinder head.

Fully Reversible Engine but..

◮ The impossibility relates to the
isothermal processes - (reversible
heat transfer).

◮ This means the heat transfer takes an
impossibly long time over an
impossibly large area.

S

T, h

12

3 4

V

p

Th

Tc

3

4

1

2

Qh

Qc

FEEG1003 : Thermofluids The Carnot Cycle Lecture 9 : Slide 3 / 11 : Page 116



The Carnot cycle as a maximum efficiency engine.

All the heat transfer occurs at the
heat sink/source temperature

◮ The Carnot Efficiency is therefore (as
noted above)

◮ ηth = W
Qh

= Qh−Qc
Qh

◮ ηth = 1 − Tc
Th

For all practical model systems

◮ Heat addition/rejection steps occur
over a temperature range.

S

T, h

12

3 4

V

p

Th

Tc

3

4

1

2

Qh

Qc
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Reciprocating Engines

Overview and Terminology

◮ Piston moves a certain stroke between Bottom and Top
Dead Centre (BDC and TDC)

◮ Clearance volume @TDC = Vmin

◮ Total volume @BDC =Vmax

◮ Volume compression ratio r = Vmax/Vmin

Variations
◮ SI engines use smaller compression ratios, lighter fuels,

inject fuel various ways
◮ CI engines use larger compression ratios, inject heavier

fuels directly into the cylinder to auto-ignite the
combustion mixture.

◮ Vast scale/speed range, F1 engines 15000rpm, 30cc
model aircraft engines, marine Diesels the size of
houses.

TDC

BDC

intake exhaust

bore

piston
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Net Work Measurement

The area enclosed by a cycle on a PV
diagram defines the net work done by that
cycle.

A common term to characterise engine
performance is the mean effective pressure
(MEP).

It is a ficticous pressure which if acted on
the piston during the entire piston motion
from BDC to TDC would produce the same
net work obtained by the cycle. Ie the two
shaded areas are equal.

W = MEP.Area.Stroke= MEP.(sweptvol)

Or

MEP= W
Vmax−Vmin

p

V

MEP

TDC BDC
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Practical Heat Engine : 4 Stroke Spark Ignition IC Engine

◮ Compression stroke : from BDC to TDC (note clearance volume), both valves
closed (usually fuel injected during the intake stroke)

◮ Power/expansion stroke : Injection of liquid fuel, ignition of compressed mixture
(near constant volume process with pressure/temperature rise), expansion of
combustion mixture

◮ Exhaust stroke : Exhaust valve opens, hot gases pushed out of cylinder by stroke
◮ Intake stroke : exhaust valve closes, intake opens, fresh cooler air charge sucked

into cylinder

p

v

Intake

Compression

Expansion

Exhaust
m

TDC BDC

Intake
valve opens

Ignition

End of

combustion

Exhaust
valve opens

Compression
stroke

Air-fuel
mixture

Power (expansion)
stroke

Exhaust
gases

Exhaust
stroke

Air-fuel
mixture

Intake
stroke
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The Otto Cycle : A model of the 4 Stroke SI IC Engine

Here the working fluid stays in the cylinder

◮ Process 1-2 : Isentropic/Adiabatic compression
◮ Process 2-3 : constant volume heat addition (modelling the fuel injection and

combustion, +ve)
◮ Process 3-4 : Isentropic expansion (power stroke)
◮ Process 4-1 : constant volume heat rejection (-ve)

p

v

Intake

Compression

Expansion

Exhaust
m

TDC BDC

Intake
valve opens

Ignition

End of

combustion

Exhaust
valve opens

p

vTDC BDC

2

3

4

1

Isentropic

Isentropic

qin

qout

FEEG1003 : Thermofluids The Carnot Cycle Lecture 9 : Slide 8 / 11 : Page 121



Air Standard Assumptions for using a system basis for an IC Engine

The assumptions used to model an IC engine are

◮ The working fluid is air which continuously circulates in a closed and always
behaves as an ideal gas

◮ All the processes are internally reversible.
◮ The combustion process is a heat addition process from an external source
◮ The exhaust process is a heat rejection process that restores the working fluid

back to its original state

p

v

Intake

Compression

Expansion

Exhaust
m

TDC BDC

Intake
valve opens

Ignition

End of

combustion

Exhaust
valve opens

p

vTDC BDC

2

3

4

1

Isentropic

Isentropic

qin

qout
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Net Work for an Otto engine cycle

Example

Calculate the net work from a cycle

◮ NetWork= W12 + W32, W23 = W41 = 0

◮ Isentropic/adiabatic process: pVγ = K

◮ W12 =
∫ 2

1 pdV = K
∫ 2

1 V−γdV =
K

1−γ
(V1−γ

2 − V1−γ
1 )

= 1
1−γ

(P2Vγ
2 V1−γ

2 −P1Vγ
1 V1−γ

1 ) =
(P2V2−P1V1)

1−γ

◮ W34 =
(P4V4−P3V3)

1−γ

p

vTDC BDC

2

3

4

1

Isentropic

Isentropic

qin

qout

Note : W34 is +ve and W12 is -ve
NetWork= (P4V4+P2V2−P3V3−P1V1)

1−γ

Or the area inside the PV diagram – the larger the area (better the shape) the more
work is obtained.
Hint : Often easier to work out the net heat transfer !
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Summary of this Lecture/Suggested Reading

Lecture Summary

◮ Introduced the Carnot Cycle, what is required to in theory build one
◮ Outlined why it is the cycle with the highest possible efficiency – lossless and

energy transfers occur at the reservoir temperatures
◮ Provides a baseline with which to bench-mark the performance of real heat

engines

Suggested Further Reading

◮ Cengel and Boles : chapter 9
◮ Shrimpton section 3.8

Suggested Further Study

◮ Complete chapter 6 questions.
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Internal Combustion Engines : Practical Engine Cycles

Last Lecture we covered:
◮ Introduced the Carnot Cycle, what is required to in theory build one
◮ Outlined why it is the cycle with the highest possible efficiency – lossless and

energy transfers occur at the reservoir temperatures
◮ Provides a baseline with which to bench-mark the performance of real heat

engines

This lecture we are going to cover:

◮ Practical Engine Cycles : Internal Combustion Engines
◮ Otto and Diesel Cycles : basic characteristics
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Limitations of Practical Engines Over the Carnot Efficiency

What do we mean by a practical Engine ?
Other than the isothermal heat transfer process of the Carnot cycle in the real world..

◮ The hot reservoir temperature is limited by a number of factors : maximum
combustion temperature possible, combustion temperature limitations due to
combustion stability, emissions formation, mechanical failure of components at
high temperatures

◮ The cold reservoir temperature limit is defined by ambient conditions
◮ Heat Transfer inefficiencies : heat not donated or lost at constant conditions

usually
◮ Losses due to fluid mixing, turbulence (fluid viscous losses), mechanical losses.
◮ Mechanical losses (friction, crevice flows).

Given these losses, and the innate limitations of heat engine (Carnot) efficiency,
practical internal combustion engines are actually very efficient.
Modern techniques have dramatically improved performance, fuel economy and
emissions characteristics.
First we discuss petrol engines (Otto Cycle) and then the Diesel Cycle.
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Otto Cycle / 4 stroke Spark Ignition Engines (1876)

The actual P-V path is quite complicated

Compression
stroke

Air-fuel
mixture

Power (expansion)
stroke

Exhaust
gases

Exhaust
stroke

Air-fuel
mixture

Intake
stroke

p

v

Intake

Compression

Expansion

Exhaust
m

TDC BDC

Intake
valve opens

Ignition

End of

combustion

Exhaust
valve opens

◮ Compression stroke : from BDC to TDC (note clearance volume), both valves
closed

◮ Power/expansion stroke : Ignition of compressed mixture (near constant volume
process with pressure/temperature rise), expansion of combustion mixture

◮ Exhaust Stroke : Exhaust valve opens, hot gases pushed out of cylinder by stroke
(> ~atm)

◮ Intake Stroke : exhaust valve closes, intake open, fresh cooler air charge sucked
into cylinder (< ~atm), Injection of liquid fuel usually through intake port

Exhaust/Intake strokes consume negligible power
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Otto Cycle Thermodynamics

Apply the air standard assumptions
It is a closed system so first law for any process is
q12 − w12 = eu,12 Heat transfer : qin = q23,
qout = −q41

◮ Heat Addition: q23 = Cv(T3 − T2)

◮ Heat Rejection: −q41 = Cv(T4 − T1)

◮ ηth,Otto = wnet
qin

= 1 − qout
qin

= 1 − T4−T1
T3−T2

◮ Using adiabatic compression relations, eg,
pvγ = C

◮
T1
T2

= ( v2
v1
)γ−1, ηth,Otto = 1 − 1

rγ−1

◮ Here r is the volume compression ratio r = v1
v2

p

vTDC BDC

2

3

4

1

Isentropic

Isentropic

qin

qout

T, h

s

1

2

3

4
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Otto Cycle Efficiency

Performance and Limits
◮ Ideal Otto efficiency a strong function of r for

small r
◮ Real value will be less due to irreversibilities
◮ At large r the improvements are not so great
◮ Large r operation becomes difficult due to

‘knock’
◮ As the fuel mixture compresses it heats up and

can auto-ignite (knocking), which impacts
performance and causes engine damage.

◮ Lead used to be added to improve stability at
larger r but phased out in the late 70’s due to
toxic air pollution issues.

◮ Despite this modern autos, without anti-knock
agents, outperform older leaded engine models
significantly.

◮ Primarily due to advanced electronically
controlled fuel injection systems.
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Diesel Cycle/4 Stroke Compression Ignition engines (~1890)

Diesel (compression ignition) engines have the same basic processes as petrol (Otto)
engines with a few key differences.

◮ Fuel is not injected during the intake stroke as in a petrol engine but injected near
TDC.

◮ Heat addition is a constant pressure process
◮ Therefore knock is impossible during the compression stroke.
◮ Much larger compression ratios are possible, with improvements in thermal

efficiency over petrol engines at lower ratios.
◮ There is no spark plug – the fuel auto-ignites when injected.
◮ Because the system is much less sensitive to early ignition, a wider and cheaper

range of fuels can be used, from biodiesels, mineral oil to straight vegetable oil.
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Diesel Cycle Thermodynamics

Apply the air standard assumptions
It is a closed system so first law for any process is
q12 − w12 = eu,12

◮ Heat Addition: q23 = Cp(T3 − T2)

◮ Heat Rejection: −q41 = Cv(T4 − T1)

◮ ηth,Diesel =
wnet
Qin

= 1 − qout
qin

= 1 − T4−T1
γ(T3−T2)

◮ Defining a“cutoff ratio”, rc = v3
v2

, the volume
change during the combustion process,

◮ ηth,Diesel = 1 − 1
rγ−1 [

rγc −1
γ(rc−1) ]

◮ Where again r is the volume compression ratio
r = v1

v2

p

v

2
3

4
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Isentropic

Isentropic
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Otto and Diesel Cycle Comparison

Performance and Limitations
ηth,Diesel = 1 − 1

rγ−1 [
rγc −1

γ(rc−1)

◮ Diesel efficiency same as Otto efficiency with
the exception of the [...] term

... >1 always, ηth,Otto > ηth,Diesel

... =1 for rc = 1. Instantaneous combustion, like a
spark, ηth,Otto = ηth,Diesel

◮ Although ηth,Otto > ηth,Diesel, Diesel engines run
at much higher r, more efficient.

◮ Fuel is generally cheaper to produce and has a
higher energy content per kg

◮ Powerplant of choice for large steady power
output. Trucks, ships, back up power.

◮ Advanced engineering has enabled Diesel
autos to approach petrol engine powerplant in
terms of drivability.
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Summary of this Lecture/Suggested Reading

Lecture Summary

◮ Practical Engine Cycles : Internal Combustion Engines
◮ Otto and Diesel Cycles : basic characteristics
◮ Key difference between Otto and Diesel cycles in the heat injection assumption.
◮ A Otto cycle is theoretically more efficient, the Diesel cycle gives better practical

efficiency.

Suggested Further Reading

◮ Cengel and Boles,“Thermodynamics : An Engineering Approach”, Chapter 9
◮ Shrimpton section 3.9-3.12

Suggested Further Study

◮ Try chapter 7 questions, worked solution 7.9
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Practical Engine Cycles : Gas Turbines

Last Lecture we covered:
◮ Practical Engine Cycles : Internal Combustion Engines
◮ Otto and Diesel Cycles : basic characteristics
◮ Key difference between Otto and Diesel cycles in the heat injection assumption.
◮ A Otto cycle is theoretically more efficient, the Diesel cycle gives better practical

efficiency.

This lecture we are going to cover:

◮ The Brayton Cycle : Gas turbines (aircraft, stationary power)
◮ Approximation for a closed cycle system
◮ Thermal efficiency characteristics
◮ Discussion of inefficiencies
◮ Regeneration, Reheating, Intercooling
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The Brayton Cycle/Gas turbines : Closed Cycle Approximation

Gas turbines usually operate on a open cycle where the turbine drives the compressor
and provides the remainder of shaft work to the environment

Fresh air is drawn in, combustion fuel mixed, ignited and the exhaust gases discharged
– in the case of a jet engine through a nozzle.

The turbine can be approximated as a closed cycle using air-standard assumptions

Wnet

heat

exchange

heat

exchange

compressor turbine

1

2
3

4

Qin

◮ the combustion process is replaced by a constant pressure heat addition
◮ the exhaust is replaced by a constant pressure heat rejection process.
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The Brayton Cycle/Gas turbines : Processes

Two constant Pressure heat processes

◮ Process 12 : Isentropic compression
(compressor)

◮ Process 23 : Constant pressure heat addition
(combustor)

◮ Process 34 : Isentropic expansion (turbine)
◮ Process 41 : Constant pressure heat rejection

(exhaust)

◮ Heat Addition: q23 = Cp(T3 − T2)

◮ Heat Rejection: −q41 = Cp(T4 − T1)

ηth,Brayton =
wnet
Qin

= 1 − qout
qin

= 1 − T4−T1
(T3−T2)

Use isentropic relations to convert to a pressure

ratio, T1
T2

= ( P2
P1
)

1−γ
γ

ηth,Brayton = 1 − 1

r
(γ−1)/γ
p

where rp = P2
P1
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Brayton Cycle Performance and Limitations

Same as the Otto Cycle

◮ Efficiency increases with pressure
ratio.

◮ The limiting cycle is T3, the hot
combustion gases going into the
turbine.

◮ However for fixed turbine inlet
temperature (T3) the work obtained
from the turbine increases at small rp,
to an optimum, before finally
decreasing again at high rp.

◮ Air supplies oxygen for combustion but
also provides cooling to combustion
chamber surfaces.

◮ The amount of energy the compressor
takes from the turbine (back-work) is
usually high, and often steam
(Rankine - not covered here) cycles
are used which have much smaller
back work amount.
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Brayton Cycle with Regeneration

Increasing efficiency at low pressure ratio

◮ Temperature leaving the turbine, T4, is pure wasted heat - use preheat the inlet
feed (T5).

◮ If the regenerator was 100% efficient, T5 = T4, however a more economical value
is ~0.7.

◮ With this value, as noted in the T-S diagram, qout is reduced (by qsaved) and qin is
reduced by qregen.

◮ Regeneration works best when the pressure ratio is low. Note the dotted lines on
the isotherms of the efficiency curve is where compressor stream is heating the
turbine exit!
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Brayton Cycle with Intercooling, reheating and regeneration.

Multiple small stages better than one big one
The net work of gas-turbine cycle can be improved by reducing the back-work done by
the compressor or increasing the output of the turbine. This is achieved by :

◮ Compressor : Using Intercooling - constant pressure heat removal. This increases
the gas density and the compression efficiency.

◮ Turbine : Using Reheating - constant pressure heat addition. This increases the
temperature entering the turbine, and increasing the exit temperature. (This also
benefits the regenerator!).
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Intercooling operation and T-S Diagram

Easier to compress a cool gas..
The Intercooling staged versus un-staged compression, where the objective is to get
the pressure from P1 to P2.

Staged Brayton Cycle
The T-S diagram shows the complete cycle for the system shown on the previous slide.
We can see the intercooling and the reheating enable significantly more area to be
enclosed.
Also notice the reduction in energy taken from the hot reservoir (qin) and donated to
the cold (qout) .
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Summary of this Lecture/Suggested Reading

Lecture Summary

◮ Brayton Cycle Introduction
◮ Two constant pressure heat addition/rejection processes
◮ Practical methods to improve efficiency - regeneration intercooling/reheating

Suggested Further Reading

◮ Cengel and Boles,“Thermodynamics : An Engineering Approach”, Chapter 9
◮ Shrimpton section 3.13

Suggested Further Study

◮ Try chapter 7 questions.
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Lecture 12: Conservation Laws

Last Lecture we covered:
◮ Brayton Cycle Introduction
◮ Two constant pressure heat addition/rejection processes
◮ Practical methods to improve efficiency - regeneration intercooling/reheating

This lecture we are going to cover:

◮ Thermofluid variables - forms of energy, Joule’s Experiment.
◮ Basic Conservation Laws : Mass, Momentum and Energy.
◮ Lagrangian and Eulerian Viewpoints
◮ Systems and Control Volumes
◮ The material derivative
◮ The Reynolds Transport Theorem.
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Conservation Principles : Extensive and Intensive quantities.

Extensive Properties [A]
An extensive quantity is a quantity that is a function of how much if it there is.
Mass, Momentum and Energy are thus extensive quantities.

Intensive Properties [a]
When writing conservation laws for these properties, we would prefer to write general
equations, that are specific. These are intensive properties

Mass (A = m) Density (a = l)
Momentum (A = mU) Velocity (a = U)

Internal Energy (A = Eu) Specific Internal Energy (a = eu)

For any extensive property A, its corresponding intensive property a may be defined,
A =

∫
ρa∂V ≈ ρa∆V.

In this module, we use UPPER case for extensive, and lower case for intensive.

Example

◮ V and v (also 1/ ρ!), S and s etc.
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Fundamental Conservation Laws.

◮ Conservation of Mass ...
◮ Conservation of Momentum: Newton’s 2nd Law: F = ma.
◮ Conservation of Energy: First Law of thermodynamics.

◮ Our fundamental conservation laws
are based around a fixed mass.

◮ That mass can be moving/changing
shape (apples and balloons..)

Usually we want to work out how much fluid
moves through a device (a jet engine say)
and so we need conservation laws based
around a fixed volume through which a
mass can move.
We therefore need to devise a 100% way to
convert conservation laws to our fixed mass
framework to a fixed volume framework
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Fixed Mass Conservation : Systems and Environments.

Fixed Mass Features
◮ A fixed mass is a continuous mass of fluid that

always contains the same mass (i.e. the same
molecules). The shape/volume can change.

◮ The information associated with the fixed mass
moves with it, e.g U(t) of an apple. This is a
Lagrangian description) of a fixed mass.

◮ The ’fixed mass’ is known as a system. The
continuum it sits in is known as the
environment

◮ Only Energy crosses the system boundary.

Example

◮ Heating a gas in a box is a system process.
◮ Heating a gas in a flexible box so it expands is

a system process.
◮ The gas in a flexible box can do some work on

the environment.

V

P

δV

2 1

Q

W
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Forms of Energy, and Energy Transfer

Thermofluid operations that occur in systems are called closed processes and these are
considered in this term of this course.
Because engines work on cycles, they can be approximated by a system analysis (the
intake/exhaust processes can be approximated as heat transfers) - they are also dealt
with with this method.

Forms of Energy
Potential Energy : Eg = mgx
Kinetic Energy : Ek = 1

2 mU2

Displacement Work : Fx
Thermal (Internal) Energy : Eu = mCVT

Example
... of Energy Transfers

◮ Water Flowing over a waterfall: Potential → Kinetic Energy.
◮ Heating a gas in a rigid insulated container. Heat transfer → Internal energy.
◮ Heating a gas in a cylinder-piston assembly. Heat Transfer → Internal Energy +

Displacement Work.
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Joule’s Work → Heat Experiment.

◮ Joule developed an experiment to
show work can be converted to heat.

◮ He put a paddle wheel into an
insulated container and powered it by
a weight descending on a pulley.

◮ He showed that the temperature of the
fluid rose when work was exerted on it.

◮ More detail here:
◮

http://en.wikipedia.org/wiki/James_Prescott_Joule.
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Lagrangian and Eulerian volumes in a flow.

Relating a system to a control volume : Reminders

◮ Our fundamental conservation laws use a fixed mass basis. The information
tracks the mass.

◮ This is useful for Apples and Engines, but not generally.
◮ Non-fundamental conservations (where we don’t track the same molecules) much

more useful for us.
◮ We need a way to translate the this information without any error.

The plan is...

◮ Relate the Eulerian frame to the Lagrangian frame for a point quantity.
◮ Do the same for a fixed mass to a fixed volume.
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Eulerian and Lagrangian viewpoints

Imagine you are sitting on a river bank, recording the temperature of the water two
different ways, and at some point in time they measure the same T.

Eulerian and Lagrangian methods

◮ Method 1 Imagine you have a grid of sensors in the river, choose your sensor
there and measure T(−→x , t).

◮ Method 2 You place your sensor on a float, moving with the velocity of the river,
and measure T(−→x (t), t)

(In the Lagrangian sense), we would like to track how the floats
temperature changes with time

◮ We assume an infinitesimal time interval, δt.
◮ In that time T(−→x , t) has changed to T(−→x +−→u δt, t + δt).
◮ We define how the temperature changes on the float.

D
Dt T(

−→x , t) = Limδt→0
T(−→x +−→u δt,t+δt)−T(−→x ,t)

δt

The key point to remember here is that the velocity of the float −→u = ∂−→x
∂t .

Note that this is the Eulerian partial derivative, −→u (−→x , t)
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The Material Derivative

Recall our float temperature change is defined :
D
Dt T(

−→x , t) = Limδt→0
T(−→x +−→u δt,t+δt)−T(−→x ,t)

δt

Material Derivative in 1D - Taylor series

◮ Expanding T(x, t) in time requires us to take account of the position change :

◮ T(x(t) + uδt, t + δt) = T(x(t), t) + δt ∂T(x,t)
∂t + δx∂T(x,t)

∂x ....or.....

◮
T(x(t)+uδt)−T(x(t),t)

δt =
∂T(x,t)

∂t + u∂T(x,t)
∂x

◮ Notice that the RHS is all Eulerian quantities. So in 1-D : DT
Dt = ∂T

∂t + U ∂T
∂x

Material Derivative in 3D - Taylor series again

◮ T(y(t), t) + δt ∂T(y,t)
∂t + δy∂T(y,t)

∂y

◮ T(z(t), t) + δt ∂T(z,t)
∂t + δz∂T(z,t)

∂z

◮ T(−→x (t), t) + δt ∂T(−→x ,t)
∂t + δ−→x ∂T(−→x ,t)

∂−→x
◮ so the Material Derivative is : DT

Dt = ∂T
∂t + U ∂T

∂x + V ∂T
∂y + W∂T

∂z

The LHS is how T changes in the Lagrangian sense (on the float) and the RHS is how
φ changes in the Eulerian sense (from the sensor position).
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Lagrangian to Eulerian approaches for a finite mass/volume.

The Reynolds Transport Theorem

◮ The Reynolds Transport Theorem is derived by considering the rate of change of
any extensive variable of a system as it passes through a fixed control volume.

◮ We will use mass as our extensive variable (density is the intensive equivalent).
◮ Notice also in the example that the volume of the system is slightly larger than the

volume of the control volume - at time 0 a little bit has not yet flowed in.

CV

CS

δmin

δmout

mcv(t) mcv(t+ δt)

t = 0 t > 0

In words our problem is :
"rate of change of A in system" = "rate of change of a in CV" + "net outflow of a through
CV surface"
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Reynolds Transport Theorem (1/2)

CV

CS

δmin

δmout

mcv(t) mcv(t+ δt)

t = 0 t > 0

System Mass Balance
The mass of the system at time 0 is: msys(0) = mCV(0) + δmin

And at time δt: msys(δt) = mCV(δt) + δmout

Mass change of the system from the material derivative: Dmsys
Dt = limδt→0

msys(δt)−msys(0)
δt

Control volume mass balance
Substituting in the above definitions: Dmsys

Dt = limδt→0
mCV(δt)+δmout−mCV(0)−δmin

δt

Re-arranged: Dmsys
Dt = limδt→0

mCV(δt)−mCV(0)
δt + limδt→0

δmout
δt − limδt→0

δmin
δt
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Reynolds Transport Theorem (2/2)

From the previous slide...
Dmsys

Dt = limδt→0
mCV(δt)−mCV(0)

δt + limδt→0
δmout
δt − limδt→0

−δmin
δt

◮ 1st term RHS is the rate of change of mass inside the CV, and is thus an Eulerian
quantity : ∂m

∂t .

◮ Converting this to an intensive quantity: ∂m
∂t = ∂

∂t

∫
ρ∂V.

◮ 2nd and 3rd terms are the net rate of mass flow rate into the CV.
◮ If the flow was uniform, then the mass flow rate out of the CV would be ρUnA,

where the Un is the speed of the flow normal to the CV face.

◮ Generalising, the net mass flow into the CV, using Gauss’s Law:
∫

A ρ(
−→
U • −→n )∂A.

Which gives us the final form of the Reynolds Transport theorem:

◮
Dmsys

Dt = ∂
∂t

∫
ρ∂V +

∫
ρ(
−→
U • −→n )∂A.

◮ On the RHS, our fixed mass, on the LHS our fixed volume

In words
"rate of change of A in system" = "rate of change of a in CV" + "net outflow of a through
CV surface"
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Cool Videos..

Complex, subtle lecture - text books are not much help. Try these...

◮ https://www.youtube.com/watch?v=zUaD-GMARrA <= Start here !
◮ https://www.youtube.com/watch?v=mdN8OOkx2ko <= then this!
◮ https://www.youtube.com/watch?v=BLVY69SYVBQ <= or this
◮ https://www.youtube.com/watch?v=G1kILyV0GDM <= Finally this !
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Summary and Suggested Reading

Lecture Summary

◮ Thermofluid variables - forms of energy, Joule’s Experiment.
◮ Basic Conservation Laws : Mass, Momentum and Energy.
◮ Lagrangian and Eulerian Viewpoints
◮ Systems and Control Volumes
◮ The material derivative
◮ The Reynolds Transport Theorem.

Suggested Further Reading

◮ Crowe et al, Chapter 5.
◮ Cengel and Boles, Section 1.3,5.2, Section 5.1.
◮ Shrimpton, Section 2.2-2.3

Suggested Further Study

◮ Workbook Chapter 2 can now be completed
◮ worked solution 3.17
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Lecture 13: Mass Conservation.

Last Lecture we covered:
◮ Thermofluid variables - forms of energy, Joule’s Experiment.
◮ Basic Conservation Laws : Mass, Momentum and Energy.
◮ Lagrangian and Eulerian Viewpoints
◮ Systems and Control Volumes
◮ The material derivative
◮ The Reynolds Transport Theorem.

This lecture we are going to cover:

◮ Application of the Reynolds Transport theorem.
◮ Mass Flow across a surface.
◮ Mass Conservation.
◮ A few examples.
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As an Engineer, we need an Eulerian Conservation of Mass

We already have a Lagrangian Version..

◮ msys= 0 or Dmsys/Dt = 0

◮ We can automatically get an Eulerian Version using the Reynolds Transport
Theorem.

◮
Dmsys

Dt = ∂
∂t

∫
ρdV +

∫
ρ(
−→
U • −→n )dA.

◮ On the RHS, our fixed mass, on the LHS our fixed volume. So..
◮

∂
∂t

∫
ρdV +

∫
ρ(
−→
U • −→n )dA= 0.

Reynolds Transport Theorem is extremely powerful because

◮ We can use any variable
◮ ....but it does not really help us understand
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Direct Eulerian Mass Conservation (1/2)

Imagine we have some arbitrary steady 2D
flowfield, defined by a set of streamlines.

Now suppose we draw an imaginary area
somewhere in this flowfield.

Now suppose we want to ensure mass is
conserved within this area (volume in 3D)

We do this by defining the mass flow
through a tiny elemental area δA.

−→u

−→n

δA

At this tiny elemental area δA , the velocity vector,
−→
U passes through it at a different

angle to the unit normal of the area, −→n , a vector of unit magnitude.

Conceptually, the mass flow through the area element is due only to the normal
component of the velocity.
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Direct Eulerian Mass Conservation (2/2)

What we want to do is find out how much of−→
U is going in the −→n direction.

From simple trigonometry the normal
component is |−→U |cosθ.

General dot product definition:

−→a • −→b = a1b1 + a2b2 + a3b3 = |−→a ||−→b |cosθ.

In this case:
−→
U • −→n = |−→U |cosθ.

−→u

−→n

δA

So the mass flow through the small element is δṁ= ρ(
−→
U • −→n )dA.

Sum all elements, to give a mass conservation over the entire surface (volume). This
will be positive if there is a net loss of mass in the enclosed volume:
∫
δṁ=

∫
ρ(
−→
U • −→n )dA.

For steady flows the net mass flow must be zero, i.e.:
∫
ρ(
−→
U • −→n )dA= 0.
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Comparing Our Approaches

RTT versus Eulerian
◮ Eulerian Approach :

∫
ρ(
−→
U • −→n )dA= 0

◮ RTT Approach : ∂
∂t

∫
ρdV +

∫
ρ(
−→
U • −→n )dA= 0

Viscous Fluids
We usually have to apply the full form, because of the varying velocity in the boundary
layer.

Inviscid Fluids
For steady uniform flow, expressing normal velocities directly:
∑

inletsρUnA =
∑

outletsρUnA.
For incompressible fluids, the volume conservation equation:
∑

inletsUnA =
∑

outletsUnA.
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Summary and Suggested Reading

Lecture Summary

◮ Defined an Eulerian mass conservation equation.
◮ Defined some simple forms for an inviscid fluid.
◮ Covered some examples.

Suggested Further Reading

◮ Crowe et al. ’Engineering Fluid Mechanics’, 9th ed. SI version, Chapter 5.
◮ Shrimpton, Section 2.2.9-2.2.20, 2.3, 4.5-4.6

Suggested Further Study

◮ Workbook Chapter 9 mass conservation parts (do a few..)
◮ solutions 9.13, 9.16
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Lecture 14: (Intro to) Momentum Conservation.

Last Lecture we covered:
◮ Defined an Eulerian mass conservation equation.
◮ Defined some simple forms for an inviscid fluid.
◮ Covered some examples.

This lecture we are going to cover:

◮ Newton’s Second Law, Definition of Momentum, relation to acceleration and force.
◮ Use the Reynolds Transport Theorem.
◮ Consider a way to visualise this.
◮ Inviscid forms.
◮ Examples.
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Mass, Velocity, Momentum, Force and Acceleration.

Scalar and Vector Quantities
◮ Mass (extensive) and its intensive quantity (density - mass per unit volume) are

scalars.
◮ Momentum (extensive) and its intensive quantity (velocity - momentum per unit

mass) are vectors.
◮ Force (extensive) and its intensive quantity (acceleration - force per unit mass) are

all vectors.

So when we write a conservation equation for mass (or density) we write one equation.
When we write a conservation equation for momentum (or velocity) we write three
equations, one for each direction.

◮ Momentum in the x-direction is mUx = Mx, the momentum vector is m
−→
U =

−→
M .

◮ Rate of change of momentum is d
dt(mUx) = Fx = max.

◮ So Newton’s Second Law is a rate of momentum change equation.

Before we get onto deriving a momentum conservation equation - remind ourselves of
mass conservation.
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To find the mass flow through a surface element.

What we want to do is find out how much of−→
U is going in the −→n direction.

From simple trigonometry normal
component |−→U |cosθ

General dot product definition:

−→a • −→b = a1b1 + a2b2 + a3b3 = |−→a ||−→b |cosθ

In this case:
−→
U • −→n = |−→U |cosθ

So the mass flow through the small
element is δṁ= ρ(

−→
U • −→n )dA

All elements, and mass conservation over
the entire surface (volume)
∫
δṁ=

∫
ρ(
−→
U • −→n )dA.

For incompressible fluids the net mass flow
must be zero, i.e.

∫
ρ(
−→
U • −→n )dA= 0.

−→u

−→n

δA
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Eulerian Conservation of Momentum

We already have a Lagrangian Version..

◮
−→
F = m−→a

◮ We can automatically get an Eulerian Version using the Reynolds Transport
Theorem

◮
−→
F = ∂

dt

∫
ρ
−→
U dV +

∫
ρ
−→
U (

−→
U • −→n )dA.

Reynolds Transport Theorem is extremely powerful because

◮ We can use any variable
◮ ....but it does not really help us understand
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The velocity field ’carries’ mass/mom information....

Flow field ’carries’ density
Density = mass per unit volume = specific
mass The mass flow through the small
element is:

δṁ= ρ(
−→
U • −→n )δA

Velocity field transporting density (ρ)
information in/out of each surface element
of the entire volume.

Flow field ’carries’ velocity
Momentum flow in the x-direction through
the element would be:

δṀx = ρUx(
−→
U • −→n )δA

[kgm−3.m2s−2.m2 = kg.ms−2 = N]

Here, imagine the velocity field is carrying a
small packet of x-momentum in/out of the
volume.

−→u

−→n

δA
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Conservation of Momentum Equation.

Conservation of momentum is...
◮ ’Rate of accumulation of momentum in the volume + net rate of momentum

leaving the volume = force applied to the surface of the volume’

◮
δ
δt (

∫
ρUxδV) +

∫
ρUx(

−→
U • −→n )δA =

∑
Fx

Forces
Pressure qradient, gravity (acceleration), viscous forces, exotics.

Simplifications

◮ We will only consider steady flows in this module : ∂
∂t (

∫
ρUxdV) = 0

◮ For inviscid flows with constant flow over inlet/outlet Ṁx = ṁUx and so,
◮

∑

out Ṁx −
∑

in Ṁx =
∑

Fx

◮ one inlet+outlet ṁ(Uout,x − Uin,x) =
∑

Fx

◮ no flow (statics !)
∑

Fx = 0
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Moving Control volumes.

◮ The vast majority of the time our
control volume is fixed in space, but
there are occasions when we want to
define a moving control volume .

◮ Remember to convert the answer back
into the correct frame of reference
when you have done the question. !

v = 0

Example

◮ Let us say we wish to define the wake behind a submerged submarine moving
through the ocean.

◮ If instead we change the frame of reference, i.e. V = −U, then our submarine is
stationary and the ocean flows past it.

◮ The wake is now stationary.
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Summary and Suggested Reading

Lecture Summary

◮ Reminded ourselves that mass and density are scalar extensive and intensive
quantities.

◮ Invoked Newton’s 2nd Law and unsteady conditions to define a general
momentum conservation law.

◮ Simple Forms of the Momentum Equation

Suggested Further Reading

◮ Crowe et al. ’Engineering Fluid Mechanics’, 9th ed. SI version, Section 6.1-6.4,
6.6.

◮ Shrimpton, Section 2.2.9-2.2.20, 2.3, 4.8

Suggested Further Study

◮ Try chapter 10 questions (a few), solutions 10.3 (and with a turn)
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Lecture 15: Fluid Statics : The hydrostatic equation

Last Lecture we covered:
◮ Momentum Conservation
◮ Simple forms of the equation
◮ Some examples

This lecture we are going to cover:

◮ The hydrostatic equation – how static pressure varies in a column of a fluid
parallel to the direction of gravity.

◮ Simplifications of this if the fluid is incompressible.
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Problem Outline

Examples

The plan is..

◮ We are going to relate the pressure change in height to the weight of a stationary
liquid in a small cylinder of fluid.

◮ This is an application of the momentum equation, where
∑

Fz = 0

◮ At some z we know the pressure p, what is the pressure at some height ∆z, along
some length ∆L, at some angle theta, in a fluid of some density...

◮ We want to find ∆p in terms of ∆z

FEEG1003 : Thermofluids Statics - Pressure and Height Lecture 15 : Slide 2 / 8 : Page 171



Assumptions and Equation Derivation

We choose a small element of fluid
The weight acts in the z direction, the pressure force acts in the L direction.
Need to resolve the pressure force in the same direction.

◮ The fluid element is stationary,
therefore the forces must balance
∑

FL = 0.
◮ The weight acting in the z direction is

−mg= −ρVg= −ρδLδAg.
◮ In the L direction the weight is

mgcosθ = ρδLδAgcosθ

◮ The pressure force acting in the L
direction is (p+ δp)δA− pδA = δpδA

◮ Equating forces: −ρδLδAgcosθ = δpδA

δL

mg

p δA

(p+ δp)δA

θ δz

z

Since δz= δLcosθ and in the limit of δz , δA → 0, dp
dz = −ρg
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A word about sign convention...

It pays to think about the sign convention : Does pressure increase
with height/depth ???

◮
dp
dz = −ρg or dp

dz = ρg
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Notes and Integral Forms
Our master equation is..
dp
dz = −ρg

◮ “the rate of pressure change with direction is negative”
◮ For dz=0, dp=0, as long as density is constant : same pressure at a constant z

plane

Integration yields....

◮ p = −
∫
ρgdz

◮ Finding how p varies with height requires knowing how ρ varies with height

For incompressible fluids..

◮ p = −ρgz+ const

◮ constant depends on the pressure at z=0. If g and the z-axis are pointing in the
same direction then..

◮ p = patm− ρgz

Notes.
◮ Here ρgz is the gauge pressure, linear increase in pressure with depth
◮ Dividing by ρg gives an equation with dimensions of [L]− egpressure in terms of

mmHg
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Examples : Density variations in the hydrostatic equation

Integration of p = −
∫
ρgdzrequires knowledge of how density varies

with z.
Two relevant examples

Density is a function of temperature, and temperature is a function of
height.
This might happen in a liquid...

◮ ρ(T) = ρ0 − αT and T = T0 + βz

◮ p = −g
∫
ρ0 − α(T0 + βz)dz= −g((ρ0 − αT0)z− αβz2/2) + c

Density is a function of pressure but not temperature
this is a typical for the atmosphere.....

◮ p = ρRT

◮
dp
dz = −ρg = − pg

RT, so dp
p = − g

R
dz
T , and remember T is constant.

◮

∫ dp
p = −

∫ g
RTdz. Integrate this and you get.. ln( p

p0
) = − gz

RT where p0 is p at z=0.
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Pressure measurement in a U-tube manometer to measure pg

Example

Level A-B must be at the same
pressure (constant z)

◮ (1) : pA = pg + ρggz1

◮ (2) : pB = pA + ρf gz2

◮ pA = pB

◮ Eqn(1)− Eqn(2)

◮ pgauge= pg − pa = (ρf z2 − ρgz1)g

◮ If ρg ≪ ρf , then pgauge= ρf gz2
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Summary of this Lecture/Suggested Reading

Lecture Summary

◮ The use of a column (or head) of fluid to represent a pressure using a manometer
◮ Defined the hydrostatic equation in differential and integral form
◮ Highlighted the sign convention, how you have to think about how does pressure

change with height/depth.
◮ Discussed a simplification if the fluid may be considered incompressible, and

methods to describe the pressure change if it is not

Suggested Further Reading

◮ Crowe et al. ‘Engineering Fluid Mechanics’, 9th ed. SI version. Section 3.1-3.2
◮ Shrimpton section 4.9.1.

Suggested Further Study

◮ Try Chapter 8 questions, worked solution 8.13
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Lecture 16: Hydrostatic Forces

Last Lecture we covered:
◮ The use of a column (or head) of fluid to represent a pressure using a manometer
◮ Defined the hydrostatic equation in differential and integral form
◮ Highlighted the sign convention, how you have to think about how does pressure

change with height/depth.
◮ Discussed a simplification if the fluid may be considered incompressible, and

methods to describe the pressure change if it is not

This lecture we are going to cover:

◮ Hydrostatic force distributions on submerged surfaces
◮ Integral measures of these force distributions acting through a single point on this

submerged surface, the location of this integral force.
◮ Definitions of centre of area and centre of pressure
◮ Balancing this with a moment from a hinge on a gate (for instance).
◮ Applying this to curved surfaces
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Pressure and force direction

Pressure is a scalar, the area is the vector defining the force direction

z, g

p1 p2=

◮ Pressure is force per unit area, δF = pδA

◮ Pressure acts equally in all directions.
◮ It is constant at a given z where the z axis is parallel to the direction of the gravity.
◮ Pressure is a function of z (for constant density fluids a linear function)
◮ The direction of the surface (the normal to that surface) defines the direction that

the force acts.

The horizontal case is easy
δF = pδA, so δF = (ρgz)δA so F = (ρgz)A
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Force and centre of area on an arbitrary inclined, arbitrary shaped,
planar surface.

Finding the force

◮ δF = pδA = (ρgh)δA = (ρgysinθ)δA

◮ F =
∫
ρgysinθδA = ρgsinθ

∫
yδA

Definition of the 1st moment of
area:

◮

∫
ydA= ȳA

◮ F = ρgĀysinθ = ρgĀh

Note:
◮ F is the force on the surface
◮ h̄ is the depth of the area centroid

below the surface
◮ P = F/A is the pressure at h̄, divided

by the area.

But where does this force act? at the
centre of pressure

δy

δF

y
y x

h

O

z

x out of pageθ

δA

plan view

side view
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Centre of Pressure : The point where all the force can be said to act

Take moments about point O

◮ δMaclock = yδF = ypδA = y(ρgh)δA

◮ = δMaclock = ρgy2sinθδA

◮ Maclock =
∫
δMaclock = ρgsinθ

∫
y2δA

◮ Mclock = Fyp

◮ From previous slide,
F = ρgĀysinθ = ρgĀh

Therefore..
◮ Fyp = ρgsinθ

∫
y2δA

◮ A single location where all the force,
distributed over the plate can be said
to act.

Fyp

∫
y δF

O

g
θ
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Forces on curved gates : Force components

It is easier to sum forces on a free
body diagram.

◮ In effect, we are doing our previous
analysis twice, one for each
coordinate direction.

Here, assume a circular gate, unit width.
Summing forces in the horizontal (x) and
vertical directions (y) gives

Fx = FAC =
∫

pdA= ρg
∫

ydy= ρg[ y2

2 ] =

ρgL2(2L1+L2)
2

Fy = W + FCB = ρg
πL2

2
4 + ρgL1L2

The magnitude of the force on the gate is
F = (F2

x + F2
y)

1/2

A

B

L1

L2

?

C

A

B

WFAC

FBC
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Forces on curved gates : Centres of pressure - horizontal force

Centre of pressure for the vertical
direction is
Fxyp =

∫
pydA= ρg

∫
y2dy= ρg[ y3

3 ] =

ρg[
(L1+L2)

3−L3
1

3 ]

Since Fx = ρgL2(2L1+L2)
2

So, yp = 2
3 [

3L2
1+3L1L2+L2

2
2L1+L2

]

A

B

L1

L2

?

C

A

B

WFAC

FBC
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Forces on curved gates : Centres of pressure - vertical force

The centre of pressure for the
horizontal direction is found by
taking moments about C
Fyxp = FCB

L2
2 + Wx̄

x̄ is the distance from C to the centroid of
area of a hemisphere.

In general this is x̄ =
∫

xdA
A .

It is easier to do in cylindrical cords.
The answer is x̄ = 4L2

3π

Therefore xp = 1
Fy
(ρg

πL3
2

8 +
4ρgL1L2

2
3π )

A

B

L1

L2

?

C

A

B

WFAC

FBC
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Forces on curved gates : Magnitude and Direction of Resultant force.

We now have all the information
we need :

◮ Magnitude and depth at which
horizontal force acts Fx, yp

◮ Magnitude and displacement at which
vertical force acts Fy, xp

◮ Resultant force Magnitude:
F = (F2

x + F2
y)

1/2

◮ Resultant direction: tanθ = Fx/Fy

C

A

B

Fy

Fx

F

yp

xp

θ

Key point about this analysis is that you do not find the curved surface force, you find
the resultant force arising from forces acting on a body of fluid next to it. This means
this analysis applies to any shape.
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Summary of this Lecture/Suggested Reading

Lecture Summary

◮ Hydrostatic force distributions on submerged surfaces.
◮ Integral measures of these force distributions acting through a single point, the

direction of this integral force.
◮ Balancing this with a moment from a hinge on a gate.
◮ Using free body diagrams to work out the forces on curved gates.

Suggested Further Reading

◮ Crowe et al. ‘Engineering Fluid Mechanics’, 9th ed. SI version,Section 3.4
◮ Shrimpton, section 4.9.2-4.9.3

Suggested Further Study

◮ Try chapter 8 questions.
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Lecture 17: Buoyancy Forces and Archimedes principle

Last Lecture we covered:
◮ Hydrostatic force distributions on submerged surfaces.
◮ Integral measures of these force distributions acting through a single point, the

direction of this integral force.
◮ Balancing this with a moment from a hinge on a gate.
◮ Using free body diagrams to work out the forces on curved gates.

This lecture we are going to cover:

◮ Why submerged objects float or sink.
◮ Archimedes Principle.
◮ Touch on centre of buoyancy, centre of weight and stability
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Upthrust

It is nothing to do with what is inside the object !
Upthrust arises on bodies wholly or partially submerged, because of the difference in
pressure from top to bottom.

A

E F

C

B

D

Upward force on ADC = weight of fluid above it, ie the weight of volume ADCFE.

Downward force on ABC = weight of fluid above it, ie ABCFE.

Net upthrust = weight of fluid displaced, ie in ADCB.

This is Archimedes Principle : Fupthrust= ρfluidVobjectg

Note : Buoyancy the density of the body itself is immaterial to the amount of upthrust
produced, it does of course affect the way in which the body responds to this upthrust.
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Case Studies : Density of the body relative to the density of the fluid.

Floating versus Sinking
Case 1 : ρobject = ρfluid: Body is neutrally buoyant and will sit wherever it is placed in a
constant density fluid

Case 2 : ρobject < ρfluid: Body will float so that only the submerged part of the volume
contributes to the upthrust.

Case 3 : ρobject > ρfluid: Body will sink. The speed of the motion will create an
additional drag force which at equilibrium becomes its terminal speed.

Fweight = Fupthrust+ Fdrag
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Summary of this Lecture/Suggested Reading

Lecture Summary

◮ Archimedes Principle, and that the upthrust force on a submerged body is the
weight of fluid displaced

◮ Depending on the density of the body submerged, it will either float, be neutrally
buoyant, or sink.

◮ If it sinks an additional drag force appears, which is proportional to the speed at
which the object sinks.

Suggested Further Reading

◮ Crowe et al. ‘Engineering Fluid Mechanics’, 9th ed. SI version, Section 3.6-3.7
◮ Shrimpton, section 4.9.4

Suggested Further Study

◮ Complete chapter 8 questions.
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Lecture 18: Dimensional analysis.

Last Lecture we covered:
◮ Archimedes Principle, and that the upthrust force on a submerged body is the

weight of fluid displaced
◮ Depending on the density of the body submerged, it will either float, be neutrally

buoyant, or sink.
◮ If it sinks an additional drag force appears, which is proportional to the speed at

which the object sinks.

This lecture we are going to cover:

◮ Introduction to dimensional analysis.
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Dimensional analysis : Dimensions.

Our fundamental principles ..

◮ Conservation of mass.
◮ Conservation of momentum - Newtons Second Law.
◮ Conservation of energy - First Law of Thermodynamics.

Require us to..

◮ define these physical quantities
◮ define regular amounts of them so our conservation equations are consistent.

Fundamental Dimensions
These are the basic building blocks of all other variables and are denoted by [...].
There are no fundamental reasons why we have these ones and not others.
Nevertheless they are:

◮ Mass [M].
◮ Length [L].
◮ Time [T].
◮ Temperature [θ] (only rarely used).
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Key derived dimensional quantities.

General Variable Dimensions
In general any variable may be defined in terms of dimensions [M]a[L]b[T]c.
These are our dimensional building blocks.

Common Variables
◮ Momentum is mass × velocity and Velocity U ≡ [L][T]−1.
◮ Acceleration is the rate of change of velocity with time or A ≡ [L][T]−2.
◮ Force is mass × acceleration or F = [M][L][T]−2.
◮ Stress and/or pressure is force per unit area P ≡ [M][L]−1[T]−2.
◮ Energy is force × distance F ≡ [M][L]2[T]−2.

Example
Working out the forgotten dimensions of a variable if you can remember an equation.
Work out the dimensions of pressure, use the relation p = ρgh.
So ≡ [M][L]−3[L][T]−2[L] ≡ [M][L]−1[T]−2.
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Dimensions are not Units.

Scale issues
Dimensions of a variable do not change even if the associated units do.

For example the dimensions of velocity are U ≡ [L][T]−1.

The units used to measure velocity may be km/hour, knots, mm/s etc.

D L u

Note
Units define the scale of the variable.
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Dimensional Homogeneity.

Total Velocity = velocity(1) + velocity(2) !

◮ Every term in any equation must have the same dimensions.
◮ If the equation is dimensionally wrong then is has no physical meaning, and must

be incorrect.
◮ Every term in every equation must also have consistent units. All SI units.
◮ This is an excellent way to check your equation derivations and your exam

solutions.

Example
Check the dimensions of the hydrostatic equation, p = pa + ρgz.

◮ LHS= p( F
A) ≡ [N][L]−2 ≡ [M][L][T]−2[L]−2 ≡ [M][L]−2[T]−2.

◮ RHS= ρgz≡ [M][L]−3[L][T]−2[L] ≡ [M][L]−1[T]−2.
◮ LHS= RHS. OK
◮ Bonus checking : for numerical problems ensure units are consistent (kJ and J a

classic error)
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Dimensional Analysis

How to reduce how many experiments you do..
We can use dimensional analysis to predict the form of a mathematical relationship
between say, things we control, and things we measure in an experiment.

We use dimensional analysis to design the types of experiments we perform.

Example : Let us say we wish to measure the drag force D exerted on an object of size
L in a flow of a given fluid of velocity U.

What could/should the drag depend on ? D = f (L,U, ρ, µ).

D L u
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Dimensional Analysis: example.

Non-Dimensional Functional Relationship
Let us say the Drag D ≡ [N] ≡ [M][L][T]−2 depends on:

Length L ≡ [L], Velocity U ≡ [L][T]−1, Density ρ ≡ [M][L]−3, Viscosity
µ ≡ [M][L]−1[T]−1.

D = f (L,U, ρ, µ).

Let us try to make the LHS of this non-dimensional - we divide the LHS by using some
of our variables, in some combination to make the term have no dimensions.

ρL2U2 ≡ [M][L]−3[L]2[L]2[T]−2 = [M][L][T]−2.

So now we can re-write our dimensional functional relationship, as a non-dimensional
functional relationship:

D
ρL2U2 = g(L,U, ρ, µ).
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Dimensional Analysis: example.

Defining the RHS of our relationship
Originally that Drag depends on 4 variables, and we have used 3, D

ρL2U2 = g(L,U, ρ, µ).

Therefore the term on the right hand side must:

◮ Use the unused variable (viscosity).
◮ Be non-dimensional.
◮ So we have to use the other 3 variables again to make another non-dimensional

quantity.
◮ ρUL has the same dimensions at µ , so:

D
ρL2U2 = h

(

ρUL
µ

)

We have discovered that...
The non-dimensional drag depends on a collection of variables which together have no
dimensions.
So we only have to plot the these on a 2D plot to know everything about this problem.
Non-dimensional quantities the KEY way we understand thermofluids.
We have discovered two, the Drag Coefficient and the Reynolds Number
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Dimensional Analysis: example.

The Reynolds Number defines the stability of the flow.
For low Re, the flow is stable (laminar).
Beyond some critical Reynolds number the flow becomes unstable.
Eventually turbulent. Drag in laminar and turbulent flow is very very different.
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Using Scale Models for Real Scale Engineering

Suppose we would like to design
an airship..
It might be 10m in size, move at 1m/s and
move through air.
We might want to design a model 10cm in
size, moving at 0.1m/s
We can match the Reynolds Numbers, eg
(

ρUL
µ

)

airship
=

(

ρUL
µ

)

model
We then measure the model drag, plot it
non-dimensionally
This is known as Reynolds number
similarity (cf geometric similarity).

Re = V0d
ν

or Re = V0b
ν

CD

L

b
V0

streamlines strut

(L/b = 4)

d
V0

circular
cylinder

b
V0

b
V0

flat plate

square
rod
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Summary and Suggested Reading

Lecture Summary

◮ Defined what a dimension and a unit is, and how they are different.
◮ Introduced the concept of dimensional homogeneity in equations, consistent units
◮ Laid out a procedure to create sets of non-dimensional groups of variables.
◮ Showed these non-dimensional groups have real physical meaning via the

concept of dynamic similarity.
◮ Pointed out we can use dimensional analysis to guide the design of experiments

and undertake scaled model analysis whilst retaining a constant value of a key
non-dimensional group.

Suggested Further Reading

◮ Crowe et al. Section 1.3, 1.4, 8.1
◮ Shrimpton, Section 2.4

Suggested Further Study

◮ Try chapter 4 questions. Worked solution on other possible repeating groups.
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Lecture 19: The Buckingham Pi Theorem.

Last Lecture we covered:
◮ Defined what a dimension and a unit is, and how they are different.
◮ Introduced the concept of dimensional homogeneity in equations, consistent units
◮ Laid out a procedure to create sets of non-dimensional groups of variables.
◮ Showed these non-dimensional groups have real physical meaning via the

concept of dynamic similarity.
◮ Pointed out we can use dimensional analysis to guide the design of experiments

and undertake scaled model analysis whilst retaining a constant value of a key
non-dimensional group.

This lecture we are going to cover:

◮ The formal procedure for using the Buckingham Pi theorem.

Number of Groups = Number of Variables - Number of Dimensions.
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Buckingham Pi Procedure (based on the first example of the previous
lecture).

D L u

◮ Number of Variables = 4.
◮ Number of Dimensions = 3.
◮ Number of Groups = 1.

Steps to obtain the repeating group

1. Choose at least 3 variables which together contain all (3) the dimensions present.

2. Write the non-dimensional left hand side as DρaLbUc, which gives:

3. [M][L][T]−2

︸ ︷︷ ︸

D

{

[M][L]−3

︸ ︷︷ ︸

ρ

}a{

[L]
︸︷︷︸

L

}b{

[L][T]−1

︸ ︷︷ ︸

U

}c

, which must be non-dimensional.

4. So compare the coefficients for the dimensions, gives 3 equations.

[M]...1 + a = 0
[L]...1 − 3a+ b+ c = 0
[T]...− 2 − c = 0
Which gives a = −1, b = −2, c = −2 and therefore Dρ−1L−2U−2.
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Repeat for each of the non-dim ratios on the right hand side.

Our remaining variable was µ
Our repeating variables are ρLU, find the coefficients of:

◮ µρaLbUc, e.g.

◮ [M][L]−1[T]−1

︸ ︷︷ ︸

µ

{

[M][L]−3

︸ ︷︷ ︸

ρ

}a{

[L]
︸︷︷︸

L

}b{

[L][T]−1

︸ ︷︷ ︸

U

}c

Compare the coefficients:

[M]...1 + a = 0

[L]...− 1 − 3a+ b+ c = 0

[T]...− 1 − c = 0

Leads to a = b = c = −1 and therefore µρ−1L−1U−1.
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Repeating and Remaining variables.

The repeating variables in this case were ρLU
They have the following properties.

◮ It is important that these chosen variables are not able to be expressed
non-dimensionally on their own.

◮ They contain all the dimensions
◮ Same variable count as dimensions In this case it is impossible because only

velocity has units of time. This fact defines your repeating variable group.

The remaining variables are each non-dimensionalised by one or more of the repeating
group, and each becomes a new non-dimensional group.

General steps (problem of any size)
.

◮ Work out how many groups you expect from the variables and the dimensions you
have in your problem.

◮ Find the largest number of variables that cannot be formed into a dimensionless
group (usually this is equal to the number of dimensions present) - this group is
your repeating variable group.

◮ Sequentially work out these non-dimensional groups with each remaining variable.

Original work was done by Buckingham, E, Trans ASME, 1915. He called the groups
"Pi groups", hence the Buckingham Pi theorem.
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Example: Hydraulic Jumps

Occurs when a free surface is present occasionally
Clearly for this flow there are two relevant length scales y1 and y2. as well as the
velocity U, the acceleration g and the fluid density and dynamic viscosity.

Find the non-dimensional functional relationship between the variables, e.g.
f (y1,U, ρ, µ, g) = y2.
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Number of groups, and the repeating variables

y2 = f (y1(m),U(ms−1), ρ(kgm−3), µ(kgm−1s−1), g(ms−2))

Number of Variables = 5

Number of Dimensions [L], [M], [T] = 3

Number of extra Groups = 2 (in addition to the one with y2)

y1,U, ρ are the largest number of variables that cannot be formed into a group, so
these are our repeating group. The other three variables are another entirely
reasonable group also note.

So our extra 2 Pi groups are formed from the 2 remaining variables, with the repeating
group.

Π1 = f1(y2, y1,U, ρ)

Π2 = f2(g, y1,U, ρ)

Π3 = f2(µ, y1,U, ρ)
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Solution.

Π1 = f1(y2, y1,U, ρ) = y2ya
1Ubρc ≡

{

[L]
︸︷︷︸

y2

}{

[L]
︸︷︷︸

y1

}a{

[L][T]−1

︸ ︷︷ ︸

U

}b{

[M][L]−3

︸ ︷︷ ︸

ρ

}c

[M]...c = 0

[L]...1 + a+ b− 3c = 0

[T]...− b = 0

c = b = 0, a = −1. Π1 =

(

y2
y1

)

Similarly: Π2 =

(

U2

gy1

)

, Π3 =

(

ρUy1
µ

)

and
(

y2
y1

)

= f

(

U2

gy1
, ρUy1

µ

)

Another important non-dimensional group is the Froude Number.
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Summary and Suggested Reading

Lecture Summary

◮ Introduced the methodology behind the Buckingham Pi Theorem :
◮ Work out how many groups you expect from the variables and the dimensions you

have in your problem.
◮ Find the largest number of variables that cannot be formed into a dimensionless

group (usually this is equal to the number of dimensions present) - this group is
your repeating variable group.

◮ Sequentially work out these non-dimensional groups as shown above.
◮ Introduced the Froude Number

Suggested Further Reading

◮ Crowe et al. Section 8.2-8.9 - note provides an alternative method which some
may find useful.

◮ Shrimpton Section 2.4

Suggested Further Study

◮ Complete chapter 4 questions.
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Lecture 20: Flow Assumptions and Boundary Conditions

Last Lecture we covered:
◮ Introduced the methodology behind the Buckingham Pi Theorem.
◮ Work out how many groups you expect from the variables and the dimensions you

have in your problem.
◮ Find the largest number of variables that cannot be formed into a dimensionless

group (usually this is equal to the number of dimensions present) - this group is
your repeating variable group.

◮ Sequentially work out these non-dimensional groups as shown above.
◮ Introduced the Froude Number

This lecture we are going to cover:

◮ Flow Assumptions - reduce the complexity.
◮ Boundary Conditions - what to assume at walls, edges of the domain.
◮ How to simplify problems and solve them.
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Physical Properties.

Default Condition
In this course, all physical properties are constant and non-zero except:

Density

◮ When considering system thermodynamics problems (leading to heat engines)
◮ Some flow energy problems (lectures 26 and 27)

Viscosity

◮ Viscosity : Zero when the fluid is inviscid. (most of the time except Lectures
30-33).
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Flow Dimensionality (key words to find in questions)

Reducing the dimensions to make it solvable
In the workbook, and in exam questions, you are required to solve problems that are
solvable analytically (ie using maths). A key skill is to simply your problem to a solvable
state, and an important step is to reduce the problem dimension.

uwall

’large’ scales
Usually the geometry will be large in one or more directions then nothing changes in
that direction.
In both cases we can safely assume that ∂

∂z(...) = 0

U = f (x, y),V = f (x, y) U = f (y)
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Flow Assumptions (key words to find in questions).

Steady Flow
If the flow is said to be steady then there is no change in the solution in time at a given
spatial location. Therefore:

∂
∂t (...) = 0 or d

dt(...) = 0 or U(x, y, z, t) = U(x, y, z) or U(x, t) = U(x)

Uniform Flow
If the flow is stated to be uniform then it does not vary in space. Therefore

U(x, y, z) = (A,B,C) or U(x) = A

Fully Developed
If the flow is said to be fully developed then the fluid velocity and all other variables are
constant in the main flow direction. Therefore, if the flow is in the x direction then

∂
∂x(...) = 0 for all variables except pressure

The pressure is a special case. Here the pressure gradient is also constant (may be
zero).

Example: if the flow is fully developed in the x direction then:

∂
∂x(...) = 0 except ∂p

∂x = C where C might be 0.
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Boundary Conditions: Walls.

Viscous Flow Wall Boundary Condition
At a solid surface the no-slip condition applies if the fluid is viscous. This means the
fluid, next to the wall, moves with the wall.

Fluid Tangential Velocity Assumption at the Wall
The velocity tangential to the surface, at the surface is the same as the wall velocity.
For the 1-D example U = Uwall,W = 0 at y = h. U = 0,W = 0 at y = 0.

Fluid Normal Velocity Assumption at the Wall
Default : For solid walls, the normal velocity is also zero. For the 1-D example V = 0 at
y = 0 and y = h.
For porous walls, the normal velocity is defined (in the question). For a 1-D example
wall V = Vwall at y = 0 and y = h.

uwall
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Lecture 20: Boundary Conditions: Boundary Layer at ’infinity’.

Boundary Layers
These are a thin layer of fluid near an objects surface that is moving through a (still)
fluid. They are the origin of the viscous drag force.

precisely..
U(y) → U as y → ∞.

Also means that: dU
dy → 0 as y → ∞.

practically..
U(edge) = 0.99U(∞)
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Boundary Conditions: Symmetry Plane (x,y,z coord system).

Fully Developed, Steady Flow between two large flat plates

x1

x2

x∗2

plane channel flow

A symmetry plane is present if the solution can be reflected across it.

Special properties are:

◮ Zero gradients normal to the boundary, at the boundary.
◮ Zero normal velocity at (through) the boundary.

Rarely used in part 1. Used a great deal parts 3 to 4.
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Boundary Conditions: Symmetry axis (r, θ, z coord system).

Fully Developed, Steady Flow in a round pipe
Cylindrical systems U(r, θ, z) have an axis
at r = 0.

U1 = Ur = 0 at r = 0

U2 = Uθ = 0 at r = 0

∂U3
∂r = ∂Uz

∂r = 0 at r = 0

r

Rarely used in part 1. Used a great deal parts 3 to 4.
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Examples
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Summary and Suggested Reading

Lecture Summary

◮ Fluid Property Assumptions.
◮ Problem Simplification (Flow Assumptions)
◮ Boundary Conditions (Integration Constants)
◮ Some Examples

Suggested Further Reading

◮ Shrimpton Section 2.6.4

Suggested Further Study

◮ Scan (do not solve) questions from Chapters 8,9,10,11,12 highlighting key words.
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Lecture 21: Convective and Diffusive Transport.

Last Lecture we covered:
◮ Fluid Property Assumptions.
◮ Problem Simplification (Flow Assumptions)
◮ Boundary Conditions (Integration Constants)
◮ Some Examples

This lecture we are going to cover:

◮ The mechanism of diffusion and convection.
◮ Definition of convective and diffusive flux through a control volume surface.
◮ Balance of convection and diffusion in Fluids.
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Lecture 21: Convection AND Diffusive Transport

Diffusion (of heat)

Diffusion always transports stuff down a
gradient.

Convection (of sticks)

Convection always transports stuff in the
flow direction

Convection and Diffusion Acting Together

Wax Diffusion, Heat Diffusion and Convection

The Convection-Diffusion of Energy is the subject of this lecture.
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Mass, Momentum and Energy Reminder

Conservation of extensive A is...
Accumulation of A in ∆V = Net Flow of A across the surface of ∆V + Net creation rate
of A in ∆V.
where..

Mass (A = m) Density (a = l)
Momentum (A = Mx = mUx) Velocity (a = Ux)

Enthalpy (A = Eh) Specific enthalpy (a = eh = CpT)
For any extensive property A, its corresponding intensive property a may be defined,

A =
∫

V ρa∂V ≈ ρa∆V.
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Transport of enthalpy due to Convection though a surface

Convective flow of an intensive variable (specific enthalpy)
The flow of any convected variable other than mass is the mass flow multiplied by the
intensive form of that variable.

x x+ δx/2x− δx/2

δy

δz

For instance, enthalpy flow (Js−1) = mass flow (kgs−1) × specific enthalpy (Jkg−1).

Hence: Known enthalpy flow at x = X: ṁeh = ρAUCPT = ρUCPTδyδz.

We can do this for any intensive variable a = 1,U, eh.
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Transport of enthalpy due to Diffusion through a surface

x x+ δx/2x− δx/2

δy

δz

y

x
T1

qx

T

Tw

Fourier’s Law defines the thermal flux
Heat flows down the thermal gradient, at a rate controlled by the thermal conductivity :

qx = −k dT
dx

∣
∣
∣
X
.

Heat flow is flux x area
The Heat Flow (Js−1) at the control volume centre, in the x-direction is: Aqx = qxδyδz.

Scalar (Heat) Wall Boundary Conditions
AT the wall, qx = −k dT

dx

∣
∣
∣
WALL

. So qx = −kTw−T1
∆x

Assumptions

◮ Constant Wall Temperature : Tw = const. Heat can flow in or out depending on
whether the temperature of the fluid is lower or higher than the wall.

◮ Constant Wall Flux : qx = const. The temperature at the wall is not fixed. A special
case is zero flux, which defines an adiabatic boundary condition.
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Transport of Momentum due to diffusion

t = 0 t = t1 t = t2

uw

x

y

∆x

∆y

du
dy
dy dt

t = 0 t = ∆t

Fluid is in motion - the top wall is moving and the bottom wall is not

Rate of Shear Strain = Deformation in x
length in y /time =

dU
dy δyδt

δy /δt = dU
dy .

◮ The force at the top wall is the shear force per unit area - the shear stress in the
x-direction.

◮ It is proportional to the velocity gradient in the y-direction through the viscosity
coefficient : τ = µ dU

dy

Notes
◮ Sometimes you might see it written τxy. This means "shear stress in the

x-direction acting on a area normal to the y-direction".
◮ µ is known as the "dynamic viscosity", sometimes you might see ν = µ

ρ
, which is

known as the kinematic viscosity.
◮ A linear relation between the stress and the rate of strain means the fluid is

Newtonian
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Control Volume Analysis of 1-D enthalpy Convection-Diffusion

x

u(x)

x = 0 x = 1m
T = 275K T = 375K

Test Problem Specification

◮ We have a long channel in the x-direction. The walls large in the y and the
z-direction.

◮ Assumptions : 1-D velocity, x-direction only U = Const,V = W = 0 Steady
conditions, the fluid is incompressible.

◮ We are interested in a section of this channel from x = 0 to x = 1m.
◮ Boundary Conditions x = 0, T = 273K and at x = 1, T = 373K.
◮ The information to be transported is thermal energy.

Why is this interesting ?

◮ Convection is trying to "blow" "cold" thermal energy at 273 K from left to right.
◮ Diffusion is trying to spread "hot" thermal energy from right to left.
◮ This suggests the temperature profile over the range 1 > x > 0 will be dependent

on the relative strength of convection and diffusion.
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Zeroing in on the control volume, centred on x = X

x x+ δx/2x− δx/2

δy

δz

Control Volume Analysis requires conservation over the surface.

◮ We assume we know everything about the fluid and the flow at X, U|x=X, T|x=X, dT
dx

◮ No y or z flux of convection or diffusion.
◮ We need to employ a Taylor Series to estimate information at the control volume

faces.
◮ Upstream Face : T|X−δx/2 = T|X − dT

dx

∣
∣
∣
X

δx
2

◮ Downstream Face : T|X+δx/2 = T|X + dT
dx

∣
∣
∣
X

δx
2 .

We are going to apply a general conservation law in our small volume : The principle
is, for some property A, that this property is conserved. That is...

Accumulation of A in ∆V = Net Flow of A across the surface of ∆V + Net creation rate
of A in ∆V.

Here : 0 = Net Flow of A across the surface of ∆V.
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Conservation of enthalpy due to convection flux through the CV
surfaces

x x+ δx/2x− δx/2

δy

δz

Convective flow of energy
enthalpy flow (Js−1) = mass flow (kgs−1) × specific enthalpy (Jkg−1).
enthalpy flow at x = X: CX = ṁeh = ρAUCPT = ρUCPTδyδz.

Estimating the convective enthalpy flow at the CV surfaces

◮ T varies, U,Cp, ρ are constant. Use Taylor series expansions from X to
X + δx/2,X − δx/2

◮ Downstream surface : T|X+δx/2 = T|X + dT
dx

∣
∣
∣
X

δx
2

◮ Upstream surface : T|X−δx/2 = T|X − dT
dx

∣
∣
∣
X

δx
2 .

CV Energy conservation, Convection only, Net enthalpy flow

◮ out - in =0, CU − CD = 0, so.. dT
dx

∣
∣
∣
X

UCPρδxδyδz= 0 or ρCPU dT
dx = 0.
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Conservation of enthalpy due to diffusion flux through the CV surfaces

x x+ δx/2x− δx/2

δy

δz

Diffusive flow of energy

◮ At X, we know the thermal flux (J/(sm2)) : qx = −k dT
dx

∣
∣
∣
X
.

◮ The area of the control volume surfaces normal to the x1-axis is δyδz.
◮ Diffusion energy flow, at the control volume centre, in the x-direction is

DX = qxδyδz.

Estimating the diffusive enthalpy flow at the CV surfaces

◮ T varies, U,Cp, ρ are constant. Use Taylor series expansions on qx from X to
X + δx/2,X − δx/2

◮ Downstream surface : qX+ δx
2

= qx +
δx
2

d(qX)
dx .

◮ Upstream surface : qX− δx
2

= qx − δx
2

d(qX)
dx .

CV Energy conservation, Diffusion only, Net enthalpy flow

◮ out - in =0, DU − DD = 0, so.. +δxδyδz

(

d(qX)
dx

)

= −δxδyδzkd2T
dx2
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Convection AND Diffusion flow Energy Conservation

Recall, the basis for any conservation law is:

Accumulation of A in ∆V = Net Flow of A across the surface of ∆V + Net creation rate
of A in ∆V.

For our example 1st term of the LHS = Net creation rate = 0

However we have two methods of transporting information across the surface:
Convection and diffusion.

Therefore for this problem the energy conservation law is:

ρCPU dT
dxδxδyδz− δxδyδzkd2T

dx2 = 0.

Or U dT
dx = k

ρCp

d2T
dx2 .

We will examine this equation in more detail next lecture.
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Lecture 21: Summary and Suggested Reading

Lecture Summary

◮ The mechanism of diffusion and convection.
◮ Definition of convective and diffusive flux through a control volume.
◮ Fourier’s Law (for diffusive heat flux).
◮ Newtonian Stress-Rate of Strain relation
◮ Balance of convection and diffusion.
◮ http://www.telegraph.co.uk/news/newstopics/howaboutthat/11823069/Why-

Christopher-Robin-lost-at-Poohsticks-his-stick-was-too-thin.html
◮ (complete nonsense !)

Suggested Further Reading

◮ Section 2.4 Crowe et al.
◮ Shrimpton, Section 2.6.1 - 2.6.5
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Lecture 22: Non-dimensional analysis of Convection-Diffusion
Problems.

Last Lecture we covered:
◮ The mechanism of diffusion and convection.
◮ Definition of convective and diffusive flux through a control volume.
◮ Fourier’s Law (for diffusive heat flux).
◮ Newtonian Stress-Rate of Strain relation
◮ Balance of convection and diffusion.

This lecture we are going to cover:

◮ Analysis of steady 1-D convection diffusion problems.
◮ Non-dimensional analysis of the equation - Prantl, Reynolds and Peclet Number.
◮ Reynolds Number and Turbulence.
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Our Enthalpy Convection-Diffusion equation and the problem.

x

u(x)

x = 0 x = 1m
T = 275K T = 375K

x x+ δx/2x− δx/2

δy

δz

For this problem the energy conservation law is
U dT

dx = k
ρCp

d2T
dx2

The coefficients of the 2nd order term are all material constants - assume:

C = k
ρCp

, therefore

U dT
dx = Cd2T

dx2 .

◮ X varies from 0 to 1.
◮ T at x = 0 == 0.
◮ T at x = 1 == 1.
◮ U and C are constants. For C best to think of only k can change).

We can derive the exact solution (not part of this module) to show how the values U,C
affect the T(x) profile.
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Example Results : T(1)=1.T(0)=0.,U=10,C=1.
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Example Results : T(1)=1.T(0)=0.,U=100,C=1.
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Example Results : T(1)=1.T(0)=0.,U=10,C=5.
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Extracting Scales from the Fluid Properties.

Extracting Scales from Equations to understand them
In what follows fluid physical properties (e.g. k) are normalised (e.g. k∗) by using a
reference value ko.
This is constant throughout the domain (e.g. ko).
The same applies to spatial and temporal scales, and also differential quantities.

Normalised Fluid Physical Properties

Physical property SI units Symbol Normalised parameter
Thermal conductivity Wm−1K−1 k k∗ = k

ko

Specific heat Jkg−1K−1 Cp C∗
p =

Cp
Cpo

Density kgm−3 ρ ρ∗ = ρ
ρo

Viscosity Nsm−2 µ µ∗ = µ
µo

Mass gas constant J/kgK R R∗ = R
Ro

Example
Imagine we have a variable viscosity problem, and the viscosity ranges from
0.5E − 5to3.2E − 5Ns/m2.
We take µo = 10−5Ns/m2, and so µ∗ = 0.5to3.2, such that µ = µoµ∗.
Note that the reference holds the dimensions, and the variable quantity is
dimensionless.
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Extracting Scales from the Geometry and Variable of Interest

Geometry/Flow property SI units Symbol Normalised parameter
Length m xi x∗i = xi

xo

Velocity ms−1 Ui U∗
i = Ui

Uo

Temperature K T T∗ = T
To

Time S t t∗ = tuo
xo

These choices are problem dependent. Here, the problem is steady, so no inherent
timescale of the problem.
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Scaled Differential operations.

Differential operators must also be non-dimensionalised,

t∗ = t Uo
xo
, dt∗

dt = Uo
xo
, d

dt =
Uo
xo

d
dt∗

x∗ = x
xo
, dx∗

dx = 1
xo
, d

dx = 1
xo

d
dx∗

The idea behind this is that the magnitude of the variable is held in the dimensional
term (Uo say) and the non-dimensional term (U∗ say) is of order 0.

For instance a trivial examples is if U = 10ms−1, Uo = 10ms−1 and U∗ = 1

Or, if the flow varies between 100ms−1 and 130ms−1, Uo = 100ms−1 and 1.3 > U∗ > 1

The real power of the technique however is when groups of these dimensional
variables are made non-dimensional, these groups tell you how the equations (i.e. the
physics) behave.

This is a much more intuitive way to define non-dimensional numbers, understand what
they mean.
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Non-dimensional form of the Convection-Diffusion Equation.

Non-dimension

U dT
dx = Cd2T

dx2

[

UoTo
xo

]

U∗ dT∗

dx∗ =

[

CoTo
x2
o

]

C∗ d2T∗

dx∗2

U∗ dT∗

dx∗ =

[

Co
Uoxo

]

C∗ d2T∗

dx∗2

U∗ dT∗

dx∗ = 1
Peo

d2T∗

dx∗2

Note: 1
Peo

=

[

Co
Uoxo

]

=

[

ko
ρoCpoUoxo

]

=

[

µo
Uoxoρo

][

ko
µoCpo

]

= 1
ReoPro
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Dimensionless Numbers.

[

ρoUoxo
µo

]

[
Cpoµo

ko

]

[

goxo
U2

o

]

[
U2

p
γoRoTo

]

[

convective flux
viscous flux

]

[

viscous flux
thermal flux

]

[

body force
inertia force

]

[

flow speed
wave speed

]

Reynolds

Prandtl

(Square of the
inverse) Froude

(Square of) Mach

Re0

Pro

Fro

Mao
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Reynolds number and the scale range/strength of the non-linearity.

Non-dim steady constant density mass, momentum:

∂U∗

i
∂x∗i

= 0

∂
∂x∗j

(U∗
i U∗

j ) = − ∂p∗

∂x∗i
+ 1

Re0

∂τ∗

ij
∂x∗j

Reynolds number characterises the relative importance of nonlinear-linear effects.

These are the key equations of fluid mechanics - tensor forms *NOT* part of this
module.
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Reynolds number and the scale range/strength of the non-linearity.

Reynolds Number Flow Dependence

◮ The non-dim numbers tell you real things about the physics without solving any
equations.

◮ The conceptual leap to make in this lecture is you don’t need the equation.
◮ If you have the scales of the problem, and you understand what non-dim numbers

mean...
◮ Then you know what the fluid mechanics are like in your problem.
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Limiting Forms of the Navier-Stokes equations.

Full N-S Equation, assuming steady flow and no body forces
∂

∂x∗j
(U∗

i U∗
j ) = − ∂p∗

∂x∗j
+ 1

Re0

∂τ∗

ij
∂x∗j

Inertial, pressure force and viscous force present.

Euler Equations - negligible viscous forces : Re>> 1
∂

∂x∗j
(U∗

i U∗
j ) = − ∂p∗

∂x∗j

Reasonably accurate far away from walls for air. (Studied in Section 3). We use the
integral form of this. Integrate with volume to sort of arrive at.
Mx,out − Mx,in = ∆PA

Stokes equations - inertial forces negligible : Re<< 1
0 = 1

Re0

∂τ∗

ij
∂x∗j

Typical applications include lubrication flows, highly viscous flows. (Studied in Section
4). We actually solve the 1-D form.
d2U
dy2 = 0

But sir, why are you hurting my brain...
Both of these forms are considerably easier to solve than the full form.
None of these you will be asked to derive or solve.
Purely to demonstrate Reynolds Number dependence, and how this module is
organised.
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Summary and Suggested Reading.

Lecture Summary

◮ Analysis of steady 1-D convection diffusion problems.
◮ Non-dimensional analysis of the equation - Prantl, Reynolds and Peclet Number.
◮ Reynolds Number and turbulence.
◮ Navier-Stokes Equation and its simpler forms.

Suggested Further Reading

◮ Shrimpton, Section 2.5, Section 2.6.5. section 5.1-5.2

Suggested Further Study

◮ Try 4.15
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Lecture 23: Flow Visualization Methods

Last Lecture we covered:
◮ Analysis of steady 1-D convection diffusion problems.
◮ Non-dimensional analysis of the equation - Prantl, Reynolds and Peclet Number.
◮ Reynolds Number and turbulence.
◮ Navier-Stokes Equation and its simpler forms.

This lecture we are going to cover:

◮ Describe some ways to visualize and describe the motion of fluid.
◮ Define the difference between the flux and flow rate.
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Pathlines : A single Particle Trajectory History

Pathline Example

Pathlines: The ’path’ traced out by a single particle released from a point over at a
certain time.
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Streaklines : Where a set of particles are released over time from a
point

Streakline Example

Streaklines: The endpoints of many particles released from the same point over a
period of time.
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Streamlines : Lines connecting tangential velocity points

They are lines that are parallel to the velocity vector field

In 2D: dx
dy = U

V

◮ at one instance of time they are calculated throughout the fluid.
◮ So they only have physical meaning in steady flows.
◮ Streamlines can not cross each other. If they were to cross this would indicate two

different velocities at the same point in space and time.
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Collections of ’Streamlines’ give you ’Streamtubes’

Streamtubes are virtual ’pipes’ of fluid

A constant amount of mass flows through each tube, ṁ= ρAUn. This is the mass flow.

The mass flux is the flow rate per unit area. However many people use ’a flux’ and ’a
flow’ interchangeably.

Streamtubes: Give you all the information about the fluid that streamlines do, plus an
idea of the flow speed change.
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Example.

For the velocity field defined by
−→
U = (B+ Ay2)−→e1

(A, B > 0 and constant).

◮ Sketch the Streamlines for the following flow field on a x− y axis.
◮ Sketch the Velocity profile on a U1-y axis.
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Summary and Suggested Reading
Lecture Summary

◮ A pathline is a ’path’ traced out by a single particle released from a point over a
period of time.

◮ A streakline is the endpoints of many particles released from the same point over
a period of time.

◮ A streamline is a line that represents an instantaneous tangent to the flow
direction.

◮ Streamlines, Streaklines and Pathlines are only equivalent when the flow is steady.
◮ A stream tube is a collection of streamlines that enclose an area into which a fluid

flows.
◮ The distribution of streamlines can tell you where the flow speeds up and where

the flow slows down.

Suggested Further Reading

◮ Crowe et al. ’Engineering Fluid Mechanics’, 9th ed. SI version, Section 4.1.
◮ Shrimpton, Section 4.1 (good example in Figure 4.1).

Suggested Further Study

◮ Try 9.11
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Lecture 24: Conservation of Mechanical Force and Energy: The Euler
and Bernoulli Equation.

Last Lecture we covered:
◮ A pathline is a ’path’ traced out by a single particle released from a point over a

period of time.
◮ A streakline is the endpoints of many particles released from the same point over

a period of time.
◮ A streamline is a line that represents an instantaneous tangent to the flow

direction.
◮ Streamlines, Streaklines and Pathlines are only equivalent when the flow is

steady.
◮ A stream tube is a collection of streamlines that enclose an area into which a fluid

flows.
◮ The distribution of streamlines can tell you where the flow speeds up and where

the flow slows down.

This lecture we are going to cover:

◮ Consider a force balances in a stream tube: The Euler Equation.
◮ Integrate along the stream tube direction to obtain an energy balance equation:

the Bernoulli equation.
◮ Discuss the characteristics and assumptions used in creating the Bernoulli

equation.
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A simple example..

Force and Energy Conservation along a Streamline

◮ Consider a box of incompressible and inviscid fluid.
◮ There are some objects in the box, and flow is maintained at the inlet and the

outlet of the box.
◮ Obviously the flow is going to have to accelerate in some regions, and decelerate

in others
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A simple example: Streamline Plot.

Flow Pattern

◮ Let us say we managed to work out how to solve the flowfield.
◮ So, we can plot streamlines - and this shows us where the flow speed up and

slows down.
◮ Because the flow speeds up and slows down, there must be some force acting on

the fluid volume
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A simple example: Velocity magnitude plot.

Here we can see where the flow speeds up and slows down - and this must be
balanced by a force related to the pressure field and the [constant] gravity force - the
fluid is inviscid, so there are no shear forces.
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Force Balance along a stream tube.

We are going to take one small section of one of these stream tubes and apply a force
balance. Acceleration is a force (force per unit mass) so in words our force balance on
a fluid element along the stream tube is:

’(mass × acceleration) = (pressure change × area) + (mass × gravity)’
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Force components on a fluid element in a Streamtube.

Deriving the acceleration, pressure and weight terms : Force balance
on S..
◮ The Coordinate direction along the

streamline is S.
◮ Acceleration is dUS

dt = dUS
ds

ds
dt = US

dUS
ds .

◮ The volume element has length δS
and area δA hence volume δV = δSδA.

◮ The weight of the fluid (N) is
mg= ρδVg acting in the Z direction,
and ρδVgcosθ acting in the Sdirection.

◮ The pressure force at S= 0 (F1) is pδA

◮ The pressure force at S= δS (F2) is
expanded as a Taylor series and is
(

p+ dp
dsδS

)

δA.

S

F2

F1

W = ρgδV

δS

δz

δA

θ

z

δS δzθ

So...

ρδSδAUS
dUs
ds = pδA−

(

p+ dp
dsδS

)

δA− ρδVgcosθ
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Simplifications, and conversion to a mechanical energy balance
(Bernoulli Equation).

Starting from ρδSδAUS
dUs
ds = pδA−

(

p+ dp
dsδS

)

δA− ρδVgcosθ

Force Balance
◮ Divide by δSδA, (2) cosθ = δz/δS, Take the limit as δS→ 0, δz→ 0.

◮ We get a force balance ρUS
dUS
ds + dp

ds + ρgdz
ds = 0.

◮ This is the Euler Equation. (Inviscid force balance along a streamtube)
◮ The total force change is zero along a stream tube. It can transfer between forms.

Energy Balance

◮ Integrate w.r.t. S to get a mech energy balance (Energy = Force × distance)

◮
ρU2

S
2 + p+ ρgz= Const.

◮ This is the Bernoulli equation. (Mechanical Energy Balance along a streamtube).
◮ The total mechanical energy is constant along a stream tube. It can change forms.
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Assumptions inherent in deriving the Bernoulli Equation.

Remember, we have made several implicit assumptions by using a streamline as a
basis:

◮ The flow must be steady - otherwise streamlines have no meaning.
◮ There are no viscous forces
◮ We have also assumed that the fluid is incompressible, but that is rather subtle.

It is important to remember these assumptions and not use the Bernoulli Equation
incorrectly.
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Cavitation: An example of the inviscid Bernoulli Equation.

Consider a flow through a narrowing channel
The Bernoulli equation is:

p0 =
ρU2

1
2 + p1 =

ρU2
2

2 + p2.

As the flow velocity increases, the pressure
decreases - for a given stagnation pressure
a maximum velocity exists. For large
pressures, several things can happen:

0 1 2

1. For compressible fluids the flow velocity exceeds the speed of sound, and the flow
becomes sonic (not in this module).

2. For incompressible fluids, the flow may cavitate due to local pressure reducing to
the vapour pressure (the liquid locally boils).

Boiling may be approached by either increasing the temperature (increasing the vapour
pressure in the liquid), decreasing the pressure above it, or both (boiling a kettle on top
of a high mountain).

Cavitation due to flow is characterised by a Cavitation Number, Ca= plocal−pν
1
2 ρU2 .
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Summary and Suggested Reading
Lecture Summary

◮ Using a stream tube as a basis, derived a force balance along the stream tube.
Force is conserved along a streamline.

◮ We integrated this force balance to produce an energy balance equation, known
as the Bernoulli equation.

◮ We showed that the total energy, the sum of kinetic, potential and pressure energy
components is constant along a streamline.

◮ Because the Bernoulli equation uses a streamtube as a basis, it is only valid in
steady flows. Also no viscous forces must be present and the relation presented
here assumes an incompressible fluid.

◮ Cavitation can occur due in incompressible fluids to localised boiling when the flow
velocity increases beyond the vapour pressure.

Suggested Further Reading

◮ Crowe et al., 9th ed. SI version, Section 4.1-4.5, 7.5.
◮ Shrimpton, Section 4.2-4.3.

Suggested Further Study

◮ Try Chapter 9 questions.

FEEG1003 : Thermofluids Euler and Bernoulli Equations Lecture 24 : Slide 10 / 10 : Page 262



Lecture 25: Momentum Conservation.

Last Lecture we covered:
◮ Using a stream tube as a basis, derived a force balance. Force is conserved along

a streamline.
◮ We integrated this force balance to produce an energy balance equation, known

as the Bernoulli equation.
◮ We showed that the total energy, the sum of kinetic, potential and pressure energy

components is constant along a streamline.
◮ Because the Bernoulli equation uses a streamtube as a basis, it is only valid in

steady flows of an inviscid fluid.

This lecture we are going to cover:

◮ Remind what the Force-Momentum Equation does.
◮ Why it is not the Euler Equation.
◮ How to use this, with the Bernoulli Equation.
◮ Examples.
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Mass, Velocity, Momentum, Force and Acceleration.

Scalar and Vector Quantities
◮ Mass (extensive) and its intensive quantity (density - mass per unit volume) are

scalars.
◮ Momentum (extensive) and its intensive quantity (velocity - momentum per unit

mass) are vectors.
◮ Force (extensive) and its intensive quantity (acceleration - force per unit mass) are

all vectors.

So when we write a conservation equation for mass (or density) we write one equation.
When we write a conservation equation for momentum (or velocity) we write three
equations, one for each direction.

◮ Momentum in the x-direction is mUx = Mx, the momentum vector is m
−→
U =

−→
M .

◮ Rate of change of momentum is d
dt(mUx) = Fx = max.

◮ So Newton’s Second Law is a rate of momentum change equation.

Before we get onto deriving a momentum conservation equation - remind ourselves of
mass conservation.
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To find the mass flow through a surface element.

What we want to do is find out how much of−→
U is going in the −→n direction.

From simple trigonometry normal
component |−→U |cosθ

General dot product definition:

−→a • −→b = a1b1 + a2b2 + a3b3 = |−→a ||−→b |cosθ

In this case:
−→
U • −→n = |−→U |cosθ

So the mass flow through the small
element is δṁ= ρ(

−→
U • −→n )δA

All elements, and mass conservation over
the entire surface (volume)
ṁ=

∫
δṁ=

∫
ρ(
−→
U • −→n )dA.

For incompressible fluids the net mass flow
must be zero, i.e.

∫
ρ(
−→
U • −→n )dA= 0.

−→u

−→n

δA
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Eulerian Conservation of Momentum

We already have a Lagrangian Version..

◮
−→
F = m−→a

◮ We can automatically get an Eulerian Version using the Reynolds Transport
Theorem

◮
−→
F = ∂

∂t

∫
ρ
−→
U dV +

∫
ρ
−→
U (

−→
U • −→n )dA.

Reynolds Transport Theorem is extremely powerful because

◮ We can use any variable (we will use energy later)
◮ ....but it does not really help us understand
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The velocity field ’carries’ mass/mom information....

Flow field ’carries’ density
Density = mass per unit volume = specific
mass The mass flow through the small
element is:

δṁ= ρ(
−→
U • −→n )δA

Velocity field transporting density (ρ)
information in/out of each surface element
of the entire volume.

Flow field ’carries’ velocity
Momentum flow in the x-direction through
the element would be:

δṀx = ρUx(
−→
U • −→n )δA

[kgm−3.m2s−2.m2 = kg.ms−2 = N]

−→u

−→n

δA

Recall : Mass and Momentum are our extensive variables, 1 and
−→
U the intensive ones.

FEEG1003 : Thermofluids Momentum (Again) Lecture 25 : Slide 5 / 7 : Page 267



Conservation of Momentum Equation.

Conservation of x-momentum is...
◮ ’Rate of accumulation of x-momentum in the volume + net rate of x-momentum

leaving the volume = x-force applied to the volume’

◮
δ
δt (

∫
ρUxδV) +

∫
ρUx(

−→
U • −→n )δA =

∑
Fx

◮ Does not assume a streamline : the Euler equation is a special case of the
general Force-momentum problem.

Forces
Pressure qradient, gravity (acceleration), viscous forces, exotics.

Simplifications, and where we deal with these in the module

◮ We will only consider steady flows in this module : δ
δt (

∫
ρUxδV) = 0

◮ For inviscid flows with constant flow over inlet/outlet Ṁx = ṁUx and so,
◮

∑

out Ṁx −
∑

in Ṁx =
∑

Fx. Re>> 1

◮ one inlet+outlet ṁ(Uout,x − Uin,x) =
∑

Fx

◮ no flow (statics !)
∑

Fx = 0. Pressure and gravity forces.
◮ viscous problems : LHS=0,

∑
Fx = 0, Re<< 1. Viscous forces only.
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Summary and Suggested Reading

Lecture Summary

◮ Reminded ourselves that mass and density are scalar extensive and intensive
quantities.

◮ Invoked Newton’s 2nd Law and unsteady conditions to define a general
momentum conservation law.

◮ Simple Forms of the Momentum Equation

Suggested Further Reading

◮ Crowe et al. ’Engineering Fluid Mechanics’, 9th ed. SI version, Section 6.1-6.4,
6.6.

◮ Shrimpton, Section 2.2.9-2.2.20, 2.3, 4.8

Suggested Further Study

◮ Try chapter 10 questions.
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Lecture 26: Actuator Disk theory.

Last Lecture we covered:
◮ Reminded ourselves that mass and density are scalar extensive and intensive

quantities.
◮ Invoked Newton’s 2nd Law and unsteady conditions to define a general

momentum conservation law.
◮ Simple Forms of the Momentum Equation

This lecture we are going to cover:

◮ The careful combination of momentum and mechanical energy conservation.
◮ Propeller performance, through use of:
◮ Actuator disk theory.
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Lecture 26: Propeller versus Turbines

Propellers: Move through the fluid

u ω

Pin

◮ u is the speed of the object ’speed of
advance’.

◮ Pin is the power input to drive the
propeller.

Turbines: Fluid moves through the
turbine

◮ V is the speed of the oncoming fluid.
◮ Pout is the power extracted from the

fluid motion.

Propeller : Stationary frame
To analyse the problem, in the propeller case, we should change the frame of
reference, U = V − u
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Understanding The Propeller/Turbine

The Propeller/Turbine - as a ’black
box’

◮ It is a thin disk of diameter D.
◮ Assume a 1-D, steady flow.
◮ Flow through the blades is viscous

and complex.
◮ Causes a pressure difference.

u0

p0

u1

p1

u2

p2

u3

p3

0

1 2
3

blades

Considering the disk - the fluid state at stations 1 and 2

◮ A = πD2

4 .
◮ Mass conservation: ṁ= ρAU1 = ρAU2 = const. Therefore, U1 = U2.
◮ Momentum Conservation ṁ(U2 − U1) = 0. Therefore (p1 − p2)A+ Fx = 0.
◮ Pressure difference must exist - it generates the Force (thrust).
◮ Bernoulli is violated, because of viscous losses due to turbulence.
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Understanding the Far Field

We can apply Bernoulli
◮ Can apply Bernoulli from 0 → 1.
◮ Can apply Bernoulli from 2 → 3.
◮ Assume Stations 0 and 2 are ’far’

upstream and downstream.
◮ We can assume p0 = p3 = patm.
◮ We know that U1 = U2.

u0

p0

u1

p1

u2

p2

u3

p3

0

1 2
3

blades

Bernoulli between :

◮ 0 → 1 :
ρU2

0
2 + patm =

ρU2
1

2 + p1.

◮ 2 → 3 : ρU2
2

2 + p2 =
ρU2

3
2 + patm.

Adding these equations gives: ρU2
2

2 + p2 +
ρU2

0
2 + patm =

ρU2
3

2 + patm+
ρU2

1
2 + p1.

Which gives, p2 − p1 = 1
2ρ(U

2
3 − U2

0).

Force is
F = (p2 − p1)A = πD2

8 ρ(U2
3 − U2

0).
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What Actuator Disk Theory tells us

Disk theory predicts that:

◮ F ∝ D2.
◮ F ∝ (U2

3 − U2
0).

u0

p0

u1

p1

u2

p2

u3

p3

0

1 2
3

blades

Now consider a x-momentum balance from 0 → 3.
◮ We know no force is applied 0 → 1 and 2 → 3 : only force present 0 → 3 is the

disk.
◮ x-momentum balance 0 → 3 is : Mx,out − Mx,in = Fx

◮ ṁ= const: therefore Fx = ṁ(U3 − U0)

◮ Choose ṁ= πD2

4 ρU1, then Fx = πD2

4 ρU1(U3 − U0)

Comparing from Bernoulli: F = πD2

8 ρ(U2
3 − U2

0)

◮ 2U1(U3 − U0) = (U2
3 − U2

0) must be true, which means that..

◮ U1 = U3+U0
2 . Half the speed increase occurs upstream of the propeller.
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Thrust generated, Power consumed and obtained, the theoretical
efficiency.

Force Derivation
◮ We derived the Force (thrust) is F = ṁ(U3 − U0), and that ṁ= πD2

4 ρU1.
◮ We found that U3 = 2U1 − U0 gives:

◮ Force: F = πD2

4 ρU1(2(U1 − U0)) =
ρπD2

2 U2
1

(

1 − U0
U1

)

.

Efficiency Derivation

◮ Power consumed : FU1 = ρπD2

2 U3
1

(

1 − U0
U1

)

.

◮ Power useful : Thrust × Velocity of advance : FU0.
◮ Perfect (lossless) efficiency : Useful/Consumed : ηperfect=

FU0
FU1

= U0
U1

.
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Theoretical characteristics of propellers.

Thrust

◮ Thrust (force): F = ρπD2

2 U2
1

(

1 − U0
U1

)

◮ Proportional to D2,U2
1 ,

U0
U1

, which means.

◮ Large rotors and high wind speeds at the rotor
required, as is the streamline curvature.

Power and Efficiency Trade off

◮ Power consumed D2,U3
1 ,

U0
U1

- highly non-linear
with wind speed.

◮ Theoretical Efficiency directly proportional to
U0
U1

, 100% efficiency is impossible.

◮ The more power you add via reducing U0
U1

, the
less efficiently you do so !

◮ Bigger slower propellers are more efficient.

0 1

η

p
ow

er

u0/u1

actual

perfect
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Actual Efficiency of propellers.

In reality there are losses due to:

◮ Frictional effects on the propeller blade surface.
◮ Rotational energy imparted to the fluid when it

goes through the propeller.
◮ Pressure variations on the surfaces of our

’black box’.

The power losses are (roughly) proportional to the
momentum entering the propeller,

◮ PLOSS∝ ṁU2
1 and therefore...

◮ PLOSS= CṁU2
1 . 0 1

η

p
ow

er

u0/u1

actual

perfect

Therefore the actual efficiency is:

◮ ηactual =
FU0

FU1+PLOSS
.

◮ Typical aircraft have efficiencies of 0.85 - very impressive !
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Theoretical characteristics of wind turbines.

Most Propeller Conclusions Apply
Here

◮ F ∝ D2.
◮ F ∝ (U2

3 − U2
0).

Power and Efficiency is different

◮ Power available is FU0 = 1
2ρA1U0

3

◮ Power extracted is FU1

◮ ηperfect=
FU1

1
2 ρA1U3

0
= 1

2

(

1 − U3
U0

)(

1 + U3
U0

)2

◮ Known as the Betz Limit (no need to be able to prove this).
◮ Figure shows efficiency versus U3/U0, 59% is the maximum possible.
◮ Impacted by gusts, frictional, mechanical and electrical losses.
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Summary and Suggested Reading
Lecture Summary

◮ Derived actuator disk theory, using the Bernoulli equation (away from the disk)
and the Momentum equation (across it).

◮ Showed that to extract momentum from or deliver momentum to the fluid, the
streamlines must expand or compress across the disk.

◮ Power output is improved in all cases by using larger blades.
◮ Losses are due to frictional, rotational and pressure fluctuation effects.
◮ The best propellers have efficiencies of 85% .
◮ The theoretical efficiency of a wind turbine, and its maximum efficiency (the Betz

Limit) is 0.59.

Suggested Further Reading

◮ Cengel and Cimbala, ’Fluid Mechanics: Fundamentals and Applications’, 2nd ed,
SI units, Page 822 onwards (wind turbines).

◮ Shrimpton, Section 4.10.

Suggested Further Study

◮ Material covers chapters 9 and 10.
◮ Try 10.4
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Lecture 27: The Steady Flow Energy Equation.

Last Lecture we covered:
◮ Derived actuator disk theory, using the Bernoulli equation (away from the disk)

and the Momentum equation (across it).
◮ Showed that to extract momentum from or deliver momentum to the fluid, the

streamlines must expand or compress across the disk.
◮ Power output is improved in all cases by using larger blades.
◮ Losses are due to frictional, rotational and pressure fluctuation effects.
◮ The best propellers have efficiencies of 85% .
◮ The theoretical efficiency of a wind turbine, and its maximum efficiency (the Betz

Limit) is 0.59.

This lecture we are going to cover:

◮ Derive a general energy equation, for steady flows, based on the First Law of
Thermodynamics.

◮ It is really the (Rate of Change of the) First Law for Flow Systems.
◮ We do this by starting from a (Lagrangian) system description, and apply the

Reynolds Transport Theorem to convert it to an (Eulerian) control volume
description.

◮ Then we simplify the SFEE for classic engineering sub-systems.
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From the First Law of Thermodynamics (system) to the SFEE (control
volume)

The First Law of Thermodynamics (for a system, fixed mass) is an
energy conservation balance




thermal
energy transfer across

system boundary(Js−1)



−





work the
system does on its

environment(Js−1)



 =





change
of energy of the

system mass(Js−1)





◮ Sign convention for thermal energy transfer is positive into the system.
◮ Sign convention for work energy transfer is positive out of the system.
◮ Q12 − W12 = Eu,12.

The SFEE is the First Law, only a Rate of Energy Change of a control
volume

◮ Because the SFEE is a energy rate of change equation, terms like Q12 for a
system become Q̇ for a CV

◮ A control volume can have ’energy’ flowing in/out of it by convection and diffusion.
◮ In the SFEE conduction (diffusion) of energy through the control volume surface is

Q̇.
◮ The convective transfer of energy by the flow is in the term ’Ėu’.
◮ We have to include all forms of energy (cf the Bernoulli equation)
◮ Work Ẇ is ’non-fluid’ energy transfer (power). For example electrical work

increasing the fluid pressure in a pump.
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SFEE : Non-flow energy terms (Q and W)

Q - Heat Conduction - non-flow heat
transfer

◮ Classic examples include boilers, heat
exchangers.

◮ Anything where energy is added/removed from
the fluid due heat transfer and...

◮ ....not due to fluid convection into/out of the CV
◮ Q>0 when adding energy.

W - Non-thermal Non-flow energy transfer

◮ Classic examples include pumps, turbines,
electrical heaters.

◮ Anything where energy is added/removed from
the fluid not due heat transfer and...

◮ ...not due to fluid convection into/out of the CV
◮ W>0 when energy is extracted from the fluid (ie

a turbine)

ṁ

Q̇
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SFEE : Flow energy terms

Energy Conservation due to convection and
accumulation in a CV

◮ For the system First Law, Eu,12 represented the change in
internal energy in the system from state 1 to 2

◮ For the SFEE, we need to consider other forms of energy,
and define a rate of change of energy.

◮ The rate of change of a system variable is defined as the
material derivative. So if ET is our energy in the system, the
rate of change is D

Dt ET

◮ To define this for a control volume, we use the Reynolds
Transport Theorem

D
Dt ET = ∂

∂t

∫
ρeTδV +

∫

A ρeT
−→
U • δ

−→
A

◮ Note we are going from Extensive (system) to intensive
(control volume) ET =

∫
ρeTδV ≈ ρeT∆V.

◮ We are not dealing with unsteady energy problems in this
module, hence

D
Dt ET =

∫
ρeT

−→
U • δ

−→
A .

This gives
Q̇− Ẇ =

∫
ρeT

−→
U • δ

−→
A

eT,3, ṁ3

eT,1

ṁ1

eT,2
ṁ2

eT,4

ṁ4Q̇

Ẇ
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Simplifying the Flow energy

Simplifying
∫
ρeT

−→
U • δ

−→
A

◮ note ṁ=
∫
ρ
−→
U • δ

−→
A .

◮ if fluid is inviscid, and uniform across a CV inlet/outlet then...
◮ ṁ= ρUnA and..
◮ Rate of energy flow across an inlet/outlet is ṁeT and..
◮ SFEE : Q̇− Ẇ =

∑

out ṁeT −∑

in ṁeT

eT,3, ṁ3

eT,1

ṁ1

eT,2
ṁ2

eT,4

ṁ4Q̇

Ẇ

Decomposing the total energy to components
The last stage is to decompose our total energy in its components:
eT = eu + ek + ep + eg where:

◮ eu = CVT: specific internal energy.

◮ ek = U2

2 : kinetic energy per unit mass.

◮ ep = p
ρ

: pressure energy per unit mass.

◮ eg = gz: potential energy per unit mass.

The conceptual leap required is these energies are convected by the flow velocity.
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Dealing with energy flows

Q̇− Ẇ =
∫
(CVT + U2

2 + p
ρ
+ gz)ρ

−→
U • δ

−→
A .

◮ These energies are convected into and out of the control volume by the flow.
◮ This seems obvious for thermal and kinetic energy, but less obvious for potential

and pressure energy.
◮ For potential energy remember the best way to think about it is the net change in

height between an inlet and an outlet of a CV - a waterfall.
◮ Often internal and pressure energies are added to define the specific enthalpy

eh = CVT + p
ρ

. In energy-flow problems - use enthalpy !

◮ BE CAREFUL with units when mixing kinetic and thermal energy !
◮ The pressure energy (pressure work or flow work as it is sometimes called) is

added to Ẇ in some texts. Strictly, this is not correct (cf slide 2).
◮ .....More on this on the next slide.
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Explanation of Pressure energy inflow/outflow.

We use the idea that work = energy = force × distance
◮ Examine the flow through a

converging section.
◮ At 2, the outlet, the fluid inside the CV

pushes on the fluid outside the CV
with a force F2 = p2A2.

◮ During a time interval δt the fluid
displacement is δx2 = U2δt.

◮ So the amount of flow work is
δe2 = F2δx2 = p2A2U2δt.

◮ The rate of flow work is therefore
δe2
δt = p2A2U2 = p2

ρ
ρA2U2 = p2

ρ
ṁ.

A2

2

1

ṁ p2

This energy transfer is positive because the work is being doing by the CV fluid on the
outside.
At 1, the inlet, the term is negative because the fluid outside of the CV is doing work on
the fluid inside the cv.
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Example : Inviscid Flow Through a Boiler.

Simplifying the SFEE
◮ Inviscid form of the SFEE:

Q̇− Ẇ =
∑

out ṁ(eh +
U2

2 + gz)−∑

in ṁ(eh +
U2

2 + gz).
◮ CV is drawn to enclose only the fluid which is being heat by

a burner
◮ 2 ports.
◮ Ẇ = 0.
◮ Potential energy negligible.
◮ Kinetic energy negligible.
◮ Q is positive (adding energy to the fluid in the boiler).

SFEE simplifies to: Q̇ = ṁ(eh,out − eh,in).

ṁ

Q̇
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Example : Inviscid Flow Through a Pump/Turbine/Compressor.

Simplifying the SFEE

◮ Inviscid form of the SFEE: Q̇− Ẇ =
∑

out ṁ(eh +
U2

2 + gz)−∑

in ṁ(eh +
U2

2 + gz).

◮ Pumps are generally use to increase the pressure of the
fluid.

◮ 2 ports.
◮ Q̇ = 0

◮ Potential energy negligible.
◮ Kinetic energy negligible (most of the time).
◮ Pump/Compressor: W is negative, leading to −W being

positive.
◮ Pump power is defined as flow rate × pressure drop.

SFEE simplifies to: −Ẇ = ṁ(eh,out − eh,in)

For incompressible fluids density is constant (and not a function
of T). Furthermore, when there are relatively small temperature
changes in the pump, then:

−Ẇ = ṁ
ρ
(pout − pin)
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Example : Inviscid Flow Through a Nozzle.

Simplifying the SFEE

◮ Inviscid form of the SFEE: Q̇− Ẇ =
∑

out ṁ(eh +
U2

2 + gz)−∑

in ṁ(eh +
U2

2 + gz).
◮ Nozzles are devices for increasing the flow velocity at the exit - examples being

end of a hosepipe to a jet engine exhaust. Often the exit pressure and
temperature are at atmospheric conditions.

◮ 2 ports.

◮ Q̇ = Ẇ = 0

◮ Potential energy negligible.
◮ Sometimes you can ignore the inlet

KE (as here).

SFEE simplifies to: U2
out
2 = (eh,in − eh,out)

ṁ

For incompressible fluids density is constant (and not a function of T). Furthermore,
when there are relatively small temperature, then, i.e. the Bernoulli equation is
recovered.

ρU2
out

2 = (pin − pout)
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Example : Inviscid Flow Through a Heat Exchanger.

Simplifying the SFEE

◮ Inviscid form of the SFEE: Q̇− Ẇ =
∑

out ṁ(eh +
U2

2 + gz)−
∑

in ṁ(eh +
U2

2 + gz).
◮ Heat exchangers transfer heat from a hot stream to a cold stream, without mixing.
◮ 4 ports.
◮ Ẇ = Q̇ = 0 (no heat transfer across the cv surface).
◮ Potential, kinetic energy negligible.

SFEE simplifies to:

ṁ1eh,1 + ṁ3eh,3 = ṁ2eh,2 + ṁ4eh,4

1 2

3

4
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Example : Inviscid Flow Through a Mixing Chamber.

Simplifying the SFEE

◮ Inviscid form of the SFEE: Q̇− Ẇ =
∑

out ṁ(eh +
U2

2 + gz)−∑

in ṁ(eh +
U2

2 + gz).
◮ Mixing chambers transfer heat and mass from a hot stream to a cold stream to

another stream, for instance a shower head.
◮ 3 ports.
◮ Ẇ = Q̇ = 0 (no heat transfer across the cv surface).
◮ Potential, kinetic energy negligible.

SFEE simplifies to:

ṁ1eh,1 + ṁ2eh,2 = ṁ3eh,3

1

2

3
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Lecture 27: Summary and Suggested Reading

Lecture Summary

◮ Derived a control volume based energy equation appropriate for open processes
◮ Contains no other assumptions other than the condition of steady flow
◮ Flows through the control surface can be simplified if inviscid fluid assumed
◮ Provided a set of examples of typical engineering plant and showed the key

features of each.

Suggested Further Reading

◮ Crowe et al. ’Engineering Fluid Mechanics’, 9th ed. SI version, Section 7.1-7.5.
◮ Shrimpton, Section 4.7.

Suggested Further Study

◮ Workbook Chapter 11 can now be completed
◮ worked solution 11.4
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Lecture 28: Practical Engine Cycles: Gas Turbine Engines (Revisited).

Last Lecture we covered:
◮ Derived a control volume based energy equation appropriate for open processes
◮ Contains no other assumptions other than the condition of steady flow
◮ Flows through the control surface can be simplified if inviscid fluid assumed
◮ Provided a set of examples of typical engineering plant and showed the key

features of each.

This lecture we are going to cover:

◮ Describe jet engine operation.
◮ Use of the Steady Flow Energy Equation and Force-Momentum Equation.
◮ Open Cycle - control volume description.
◮ Similar to the Brayton Cycle used for closed cycles (systems).
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Jet Engine Basic Characteristics.

◮ Diffuser slows gas stream down (kinetic to pressure energy).
◮ Compressor pressurises the gas.
◮ Burner section adds (thermal) energy.
◮ Turbine extracts sufficient power to drive the compressor.
◮ Nozzle converts the remaining pressure energy to kinetic energy.

◮ Thrust (force) developed by the aircraft is the difference of momentum in the inlet
air, and the momentum in the exhaust. F = ṁ(Uout − Uin).

◮ These velocities are relative to the aircraft speed. In still air Uin is the aircraft
speed.

◮ The power is the force × distance the force acts per unit time, i.e.
P = FUin = ṁ(Uout − Uin)Uin.

◮ The efficiency is the useful propulsive power per unit rate of energy input from
combustion. η = P

Q̇in
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Jet Engine Open Cycle and Brayton Closed Cycle comparison.

Wnet

heat

exchange

heat

exchange

compressor turbine

1

2
3

4

Qin

◮ In the Brayton Cycle the working fluid goes around the cycle - In the Jet Engine
the point is to expel fluid from the exhaust.

◮ In the Brayton Cycle the Turbine drives the compressor, but the aim of the Brayton
Cycle is to maximise Turbine output for useful work.

◮ In the Jet Engine the turbine is only just sufficient to power the compressor and
the aim is to conserve turbine exit energy for conversion in the nozzle section. The
net work of a jet engine is zero.

◮ Because some compression occurs in the diffuser section of a jet engine the
pressure ratios are generally higher (10-25) than for a Brayton Cycle.
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Jet Engine Open Cycle: Temperature- Entropy Diagram.

T

s

1

2

3

4

5

6

qin

qout

◮ Process 1-2: Isentropic Compression in a Diffuser.
◮ Process 2-3: Isentropic Compression in a Compressor.
◮ Process 3-4: Constant Pressure heat addition due to combustion.
◮ Process 4-5: Isentropic Expansion in a Turbine.
◮ Process 5-6: Isentropic Expansion in a Nozzle.
◮ Process 6-1: (Theoretical) - this is the energy lost due to low temperature gases

being ingested by the engine and high temperature gases being expelled.
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Jet Engine Cycle Components: Nozzle

ṁ

◮ In a nozzle the area decreases, and the fluid speeds up.
◮ It is assumed that the process is isentropic, and the air KE at the inlet of the

nozzle is negligible.

◮ Inviscid form of the SFEE: Q̇− Ẇ =
∑

out ṁ(eh +
U2

2 + gz)−∑

in ṁ(eh +
U2

2 + gz).

◮ 2 ports, Q̇ = Ẇ = 0, Potential energy, inlet KE negligible.

◮ SFEE simplifies to: eh,in = eh,out +
U2

out
2 .

◮ The diffuser section is simply the inverse of this process.
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Jet Engine Cycle Components: Compressor.

◮ In a compressor the fluid is compressed, again assumed to be is-entropic.

◮ Inviscid form of the SFEE: Q̇− Ẇ =
∑

out ṁ(eh +
U2

2 + gz)−∑

in ṁ(eh +
U2

2 + gz).

◮ 2 ports, Q̇ = 0, Potential/Kinetic energy negligible (most of the time).
◮ Compressor: W is negative, leading to W being positive.
◮ SFEE simplifies to: −Ẇ = ṁ(eh,out − eh,in).
◮ The turbine stage is simply the inverse of this process, and the power output is

equal to compressor input.
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Jet Engine Components: Burner Section.

ṁ

Q̇

◮ Inviscid form of the SFEE: Q̇− Ẇ =
∑

out ṁ(eh +
U2

2 + gz)−∑

in ṁ(eh +
U2

2 + gz).
◮ CV is drawn to enclose only the fluid which is being heat by a burner, 2 ports.
◮ Ẇ = 0, Potential/Kinetic energy negligible. Q is positive (adding energy to the fluid

in the boiler).
◮ SFEE simplifies to: Q̇ = ṁ(eh,out − eh,in).
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Jet Engine: Typical Efficiency and (theoretical) losses.

◮ P = FUin| = ṁ(Uout − Uin)Uin.

◮ η = P
Q̇i n

≈ 22%.

◮ Excess KE ≈ 33% (KE of the exhaust gas
relative to the ground).

◮ Excess enthalpy ≈ 45% (Temperature rise of
the exhaust gas over ambient air.

T

s

1

2

3

4

5

6

qin

qout
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Summary and Suggested Reading

Lecture Summary

◮ Comparison of Open Cycle Jet Engine versus Closed Cycle Brayton.
◮ Definition of Jet Engine Thrust, Power and Efficiency.
◮ Definition and quantitative description of the jet engine processes.
◮ Analysis of the Energy Rate budgets showing sources and levels of inefficiency.

Suggested Further Reading

◮ Cengel and Boles, Section 8-11
◮ Shrimpton, Section 4.11.

Suggested Further Study

◮ Workbook Chapter 11 can now be completed
◮ worked solution 11.13
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Lecture 29: The Steady Mechanical Energy Equation.

Last Lecture we covered:
◮ Comparison of Open Cycle Jet Engine versus Closed Cycle Brayton.
◮ Definition of Jet Engine Thrust, Power and Efficiency.
◮ Definition and quantitative description of the jet engine processes.
◮ Analysis of the Energy Rate budgets showing sources and levels of inefficiency.

This lecture we are going to cover:

◮ Derive a sub-set of the Steady Flow Energy Equation, for isothermal fluid.
◮ Strictly this is the Steady Mechanical Energy Equation. It is however often called

the ’Extended Bernoulli Equation’.
◮ This SMEE equation is used in process equipment design using pipework. It is an

isothermal viscous flow energy conservation equation.
◮ Show that you cannot derive the Extended Bernoulli equation from the Bernoulli

equation (but you can derive Bernoulli equation from the extended form!).
◮ Show various examples of the use of the EBE/SMEE.
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Reminder: The Bernoulli Equation (inviscid flow along a streamline).

Assumptions by using a
streamline as a basis

◮ The flow must be steady - otherwise
streamlines have no meaning.

◮ There are no viscous forces present.
◮ We have also assumed that the fluid is

incompressible, but that is rather
subtle.

0 1 2

Force balance : Euler Equation

◮ ρUS
dUS
ds + dp

ds + ρgdz
ds = 0.

◮ This tells us that total force change is zero along a stream tube, but it can change
form.

Mechanical Energy Balance : Bernoulli Equation

◮ Integrate w.r.t. S to get a mech energy balance (Energy = Force × distance)

◮
ρU2

S
2 + p+ ρgz= Const.
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Reminder: Steady Flow Energy Equation.

Energy Conservation over a control volume, assuming steady flow
Q̇− Ẇ =

∫

A ρeT
−→
U • δ

−→
A

If inviscid then Q̇− Ẇ =
∑

out ṁeT −
∑

in ṁeT

◮ Q̇: Heat transfer rate (positive into CV volume,
across surface).

◮ Ẇ: Work transfer rate (positive out of CV,
across surface).

eT = eu + ek + ep + eg where:

◮ eu = CVT: Specific internal energy.

◮ ek = U2

2 : Kinetic energy per unit mass.

◮ ep = p
ρ

: Pressure energy per unit mass.

◮ eg = gz: Potential energy per unit mass

eT,3, ṁ3

eT,1

ṁ1

eT,2
ṁ2

eT,4

ṁ4Q̇

Ẇ
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Deriving the Steady Mechanical Energy Equation.

Typically, we are interested in pipe networks

◮ assume two ports
◮ 1-D flow (in the pipe direction)

Q̇− Ẇ =
∫

out(CVT + U2

2 + p
ρ
+ gz)ρUδA−

∫

in(CVT + U2

2 + p
ρ
+ gz)ρUδA

We know that ṁ=
∫
ρUδA, and that ṁout = ṁin so most of these terms simplify:

Q̇− Ẇ = ṁ(CVT + p
ρ
+ gz)out +

1
2

∫

Aout
U2ρUδA− ṁ(CVT + p

ρ
+ gz)in + 1

2

∫

Ain
U2ρUδA

KE Term
◮ If a uniform flow (i.e. U did not depend on the pipe radial direction) then the KE

term is ṁU2

2 .
◮ This is only true if the fluid is inviscid, which is never true in practice, and viscous

forces are ALWAYS important near a wall.
◮ This is the main reason you CANNOT use the Bernoulli Equation to work out the

pressure drop in a pipe (or anything else with a wall).
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Kinetic Energy Correction Factor.

(a) a uniform (inviscid) and (b) shows a real (viscous) velocity profile,
same mass flow

x

r

u

KE (a) = ṁU2

2

R

KE (b) =
∫

A
U2

2 ρUδA

The KE correction factor fix
◮ factor is defined α =

KE(b)
KE(a)

◮ KE(b) = αKE(a) = αṁU2

2 .
◮ α = 1 (uniform flow), α = 2 (laminar flow), 2 > α > 1 (turbulent flow).
◮ Note: It must be applied to each flow boundary individually.
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Further Simplifications to obtain the SMEE.

Incorporating the KE correction term
Q̇
ṁ − Ẇ

ṁ = (CVT + p
ρ
+ gz+ 1

2αU
2
)out − (CVT + p

ρ
+ gz+ 1

2αU
2
)in

Other than steady flow, 2 ports, no other assumptions made.

The SMEE is an isothermal viscous flow equation, so we re-arrange the equation to
group the thermal components.

− Ẇ
ṁ = ( p

ρ
+ gz+ 1

2αU2)out − ( p
ρ
+ gz+ 1

2αU2)in +

[

CV(Tout − Tin)− Q̇
ṁ

]

The thermal terms are an irreversible temperature rise due to viscous dissipation, and
if Q is non-zero, the transfer of that thermal energy through the pipe wall.

This energy loss is real and significant and must be considered in design calculations
for viscous flows near walls and through engineering plant.

The thermal terms as presented here are not practically useful, empirical models are
used instead.
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Models for viscous losses in the SMEE.

Viscous losses : wall friction and fittings
[

CV(Tout − Tin)− Q̇
ṁ

]

=⇒ f L
d (

1
2 U

2
) +

∑

n kn(
1
2 U

2
)

◮ Mostly the empirical model coefficients are obtained by lab experiments ensuring
dynamic similarity.

◮ Wall friction requires an empirical coefficient (f , next slide) for a pipe of length L
and diameter d.

◮ There are also many types of fitting, bends, joints etc that cause losses.
◮ The losses ALL arise due to viscous dissipation of kinetic energy.

This gives the final form of the SMEE or the ’Extended Bernoulli Equation’, EBE.

− Ẇ
m = ( p

ρ
+ gz+ 1

2αU
2
)out − ( p

ρ
+ gz+ 1

2αU
2
)in + f L

d (
1
2 U

2
) +

∑

n kn(
1
2 U

2
)

Note: Although it is often called the ’Extended Bernoulli Equation’ it is not derived or
extended from the Bernoulli Equation.
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Losses due to friction at the pipe wall (moody diagram).

Moody Diagram defines the friction coeft versus Pipe Re

◮ f is obtained by working out the Pipe Reynolds number and deciding
laminar/turbulent.

◮ A full explanation of pipe roughness and turbulence is given in Section 4 - assume
smooth for now!
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MORE simplifications to recover the Bernoulli Equation.

Starting from our SMEE/EBE
− Ẇ

ṁ = ( p
ρ
+ gz+ 1

2αU
2
)out − ( p

ρ
+ gz+ 1

2αU
2
)in + f L

d (
1
2 U

2
) +

∑

n kn(
1
2 U

2
)

◮ No work transfers
◮ No viscous losses
◮ Uniform flow

( p
ρ
+ gz+ 1

2 U2)out = ( p
ρ
+ gz+ 1

2 U2)in

◮ You can get from SFEE → SMEE/EBE → Bernoulli Equation.
◮ You CANNOT start from the BE and derive the EBE. Be careful: Several textbooks

do exactly this !
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Summary and Suggested Reading

Lecture Summary

◮ Started from the general steady flow energy equation (SFEE).
◮ Simplified it (2 ports, uni-directional flow in a pipe).
◮ Defined a Kinetic Energy Correction Factor.
◮ Assumed isothermal conditions, thermal terms account for viscous energy losses.
◮ Introduced models for fittings and pipe friction.
◮ Showed you can simplify to the Bernoulli Equation, but not start from there to

obtain the Extended Bernoulli Equation (SMEE).

Suggested Further Reading

◮ Crowe et al. ’Engineering Fluid Mechanics’, 9th ed. SI version, Chapter 5.
◮ Shrimpton, Section 5.5.

Suggested Further Study

◮ solution to 12.3 provided.

FEEG1003 : Thermofluids Steady Mechanical Energy Equation Lecture 29 : Slide 10 / 10 : Page 311



Lecture 30 : Couette Flow - The Simplest Viscous Flow

Last Lecture we covered :
◮ Started from the general steady flow energy equation (SFEE).
◮ Simplified it (2 ports, uni-directional flow in a pipe).
◮ Defined a Kinetic Energy Correction Factor.
◮ Assumed isothermal conditions, thermal terms account for viscous energy losses.
◮ Introduced models for fittings and pipe friction.

This lecture we are going to cover :

◮ Stress-Strain relationship for a Newtonian fluid.
◮ Viscous effects on fluid motion (shear stress), using couette flow as an example.
◮ Variations on the classic Couette Flow system to aid our understanding.
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Reminder of Newtonian Stress-Strain relationship

t = 0 t = t1 t = t2

uw

x

y

∆x

∆y

du
dy
dy dt

t = 0 t = ∆t

Deformation in x
length in y /time

dU
dy δyδt

δy /δt = dU
dy

Dimension Check dU
dy ≡ [LT−1L−1] = [T−1]

Note :
◮ The force at the top wall is the shear force per unit area : the shear stress in the x

direction
◮ It is proportional to the velocity gradient in the y direction through the viscosity

coefficient thus..
◮ τ = µ dU

dy : Newtons Law of Viscosity.
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Rate of Momentum Diffusion: Stoke’s first problem.

The rate at which momentum diffuses into
the fluid from an impulsively started wall to
velocity U.

The partial differential equation solved is:

∂u
∂t = µ

ρ
∂2u
∂y2 = ν ∂2u

∂y2

And the solution to this is:

u(y,t)
U = 1 − erf

(

y
2
√
νt

)
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What the solution means...

The solution to this is:
u(y,t)

U = 1 − erf

(

y
2
√
νt

)

.

◮ When z≈ 1.5, erf(z) ≈ 0.95,
u(y,t)

U ≈ 0.05.

◮ When 3
2 = y

2
√
νt

or y = 3
√
νt.

◮ Or y ∝ √
ν and y ∝

√
t.

This shows how the viscosity controls the
rate at which momentum in the x-direction
is diffused into the fluid in the y-direction.

Larger viscosity fluids diffuse momentum
faster.
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Analysis of Couette Flow using a Control Volume Analysis.

t = 0 t = t1 t = t2

uw

x

h

y

u = 0

uw

y

p

δx
δy

p stream

lines

Key Assumptions

◮ Two very large plates, normal to the y-axis, top one is moving at UW, bottom one
stationary. It is steady

◮ nothing is changing in the x and z directions so...
◮ No fluid acceleration in the x direction, (fully developed and no pressure gradient)
◮ No fluid motion in the y direction, so no pressure changes in the y-direction (no

hydrostatics here)
◮ The only force in the fluid is that of viscous shear stress (cf previous slide).

Take a CV, (δx by δy by unit width) say we know what the stress per unit width is at y, so
τ |yδx = µ dU

dy |yδx

We then use a Taylor series to define the stress at y+ δy

τ |y+δyδx =
(

τ |y + δy d
dyτ |y

)

δx = µ
(

dU
dy |y + δy d

dy
dU
dy |y

)

δx
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Analysis of Couette Flow using a Control Volume Analysis.

t = 0 t = t1 t = t2

uw

x

h

y

u = 0

uw

y

p

δx
δy

p stream

lines

◮ Since there are no other forces on the CV: τ |y = τ |y+δy or

◮ µ dU
dy = µ

(
dU
dy |y + δy d

dy
dU
dy |y

)

◮
d2U
dy2 = 0

◮ Integrate this twice to get: U(y) = Ay+ B

◮ Apply BC’s (U = 0 at y = 0 gives B = 0, etc.): U(y) = UW
y
h

◮ Stress is τ = µ dU
dy = µUW

h , Force is F = AµUW
h and Power is P =

AµU2
W

h

◮ Linear variation due to constant shear stress.
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Summary and Suggested Reading
Lecture Summary

◮ Reminded ourselves of the characteristics of the Newtonian fluid.
◮ For Couette Flow, no other external forces act other than the stress imposed by

the moving wall and the no-slip condition.
◮ Therefore the stress distribution across the plates is constant, and due to the

Newtonian stress-strain relationship a linear velocity profile must exist in the fluid.
◮ Further explored the rate at which momentum diffuses into the fluid from an

impulsively started wall and how this is controlled by viscosity.
◮ Also examined how the frequency and amplitude of an oscillating wall diffuses

momentum into the fluid.

Suggested Further Reading

◮ Crowe et al. ’Engineering Fluid Mechanics’, 9th ed. SI version, Section 9.1.
◮ Shrimpton, Section 5.2 - 5.3.
◮ Note: Description of Stoke’s first and second problems can be found in I.G. Currie,

’Fundamental Mechanics of Fluids’.

Suggested Further Study

◮ Start some chapter 12 questions. Solution to 12.2 provided.
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Lecture 31 : Poiseulle (Pipe) Flow - Pressure Gradient and Wall Shear

Last Lecture we covered:
◮ Newtonian Stress-Strain Relationship.
◮ Stress Balance in Couette flow leads to a linear velocity profile.
◮ Explored how the viscosity controls the rate at which momentum diffuses into a

fluid.

This lecture we are going to cover:

◮ Pressure driven flow, balanced by wall shear - in a pipe.
◮ Velocity profile for Laminar flow in a pipe.
◮ Define the ’friction factor’ (dimensionless wall shear stress) and introduce the

Moody diagram.
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Pipe Flow, the Basics.

Problem set up and Assumptions

◮ Assume fully developed in the
x-direction (long pipe) - nothing
depends on x (inc. dp/dx).

◮
dp
dx = p1−p2

x2−x1
= −∆p

L : Must be negative
as p must fall with x.

◮ Average (bulk mean) velocity = Ū and
volume flow rate Q = ŪA = ŪπR2.

τw

τw

x

r

u(r)

L

2R,D

x1 x2

p1 = p+∆p p2 = p

Force Balance using a CV analysis: CV is the pipe inside surface, of length L

◮ (p+∆p)πR2 − pπR2 − τW2πRL= 0. Simplifies to : ∆p
L = 2τW

R or

◮ τW = −R
2

dp
dx .

This result does not depend on the state of the flow, providing it is fully developed.
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Pipe Flow: Fully developed Laminar flow: Changing y to r coordinates..

◮ Exactly the same analysis as before,
only now we take a shell of fluid at
some point R> r > 0 and small length
δx.

◮ Prescribe the pressure change in the
x-direction as a Taylor Series (note
that dp/dx< 0)
(

p−
(

p+ dp
dxδx

))

πr2 − τ2πrδx = 0.

τw

τw

x

r

u(r)

L

2R,D

x1 x2

p1 = p+∆p p2 = p

◮ Now assume that the flow is laminar, hence stress-strain relation: τ = µ dU
dy .

◮ y is the distance from the wall, here y = R− r and dy
dr = −1,

τ = µ dU
dy = µ dU

dr
dr
dy = −µ dU

dr .

◮ Substitute shear stress definition into force balance gives dU
dr = r

2µ
dp
dx
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Pipe Flow: Fully developed Laminar flow: Velocity and stress
distribution.

r

u τ

◮ Integrate dU
dr = r

2µ
dp
dx w.r.t. r gives U = r2

4µ
dp
dx + C.

◮ Apply B.C. U = 0 at r = R: U = − 1
4µ

dp
dx(R

2 − r2) = − R2

4µ
dp
dx

(

1 −
(

r
R

)2)

◮ This shows that the velocity profile in a laminar fully developed round pipe is
parabolic.

◮ This also reveals the shear stress distribution. τ = −µ dU
dr = − 1

2
dp
dxr.

◮ The stress distribution linearly increases from zero on the centreline to
τW = −R

2
dp
dx at the wall.
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Pipe Flow: Fully developed Laminar flow: Flow rate, max and average
(bulk) velocity.

◮ Velocity Profile is U = − R2

4µ
dp
dx

(

1 −
(

r
R

)2)

.

◮ Max U occurs at r = 0 is Umax = − R2

4µ
dp
dx .

◮ A more common form of the velocity profile is

U
Umax

=

(

1 −
(

r
R

)2)

.

◮ Volume flow rate from integration of
δQ = U2πrδr.

◮ Q = 2π
∫ R

0 Urdr = −πR4

8µ
dp
dx .

◮ Recall Ū = Q
A = Q

πR2 = − R2

8µ
dp
dx = Umax

2 .

r

u τ
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Pipe Flow: Fully developed Laminar: Coefficient of friction.

From an engineers point of view, we need to know the pressure drop per unit length of
pipe, in order to size a pump.

We can pull all the previous information together to develop a dimensionless ’friction
coefficient’.

Using dimensional analysis we might expect that τW = g(ρ, µ, Ū,D).

This leads to τW
1
2 ρŪ2 = f = g

(

ρŪD
µ

)

.

Note this is a functional relationship - f depends on Reis some way. It is also completely
general in the sense that nothing has been assumed about the velocity field - this result,
what there is of it, applies to laminar and to turbulent flow.

Laminar Flow assumption: Using general definition for wall shear τW = −R
2

dp
dx and

the specific laminar flow mean velocity Ū = − R2

8µ
dp
dx we can write a specific relation:

4f = τW
1
2 ρŪ2 = 16

Re.
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Prandtl’s turbulent friction factor correlation for smooth walls/effect of
turbulence.

Recall Laminar Relation: f = τW
1
2 ρŪ2 = 16

Re

Recall also: ∆p
L = 2τW

R or τW = ∆p
L

R
2

So we could write for laminar and turbulent correlations:

Laminar: ∆p
L = 2

R
1
2ρŪ2 16

Re = 8µ
R2 Ū

Prandtl proposed for a smooth wall :
f = τW

1
2 ρŪ2 = 0.079Re−1/4

Turbulent: ∆p
L = 2

R
1
2ρŪ2(0.079Re−1/4) = g(Ū7/4)

Taking logs of the form: ln

(

∆p
L

)

= ln(Ū) + const

ln(u)

ln(∆p/L)

∼ 1

∼ 7/4
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The Moody Diagram.

◮ Laminar friction factor
does not depend on the
roughness. Laminar
friction factor fails at the
critical Re for pipe flow.

◮ Beyond the critical Rethe
pipe flow is turbulent and
the wall shear/pressure
drop depends on
roughness of the pipe as
well as the Revalue.

◮ For very rough walls, at
higher Re, the turbulence
depends only on the
roughness and not on the
Reat all!
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Qualitative explanation of the effect of roughness on pipe pressure drop.

◮ All real walls have finite roughness. If
we assume a Reynolds number based
on distance from the wall then.

◮ Rey = yU
ν

≈ y+

◮ Near the wall, viscous forces are
important when Re≈ 1, and so
y = ν/U and the fluid flow is laminar.

◮ Further away from the wall, inertial
forces are important and the flow is
turbulent.

◮ Note Rey is a function of U - as U gets
bigger, y (the laminar sub-layer gets
thinner)

◮ When the roughness < y then the flow
does not ’see’ the roughness, has no
effect on pressure drop.

◮ When the roughness >> y it creates
eddies by vortex shedding, pressure
drop does not depend on Re
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Summary and Suggested Reading.

Lecture Summary

◮ General Relationship between wall shear stress and pressure drop along the pipe
- general relation.

◮ Derivation of the properties of a laminar flow in a round pipe.
◮ General Relationship for the coefficient of friction, Moody Diagram.
◮ Features and general structure of a turbulent boundary layer.
◮ Prantl’s empirical coefficient of friction for turbulent boundary layers on smooth

walls.
◮ Comparison of pressure drop vs. bulk velocity for laminar and turbulent boundary

layers.
◮ Effect of Roughness on pressure drop for turbulent boundary layers.

Suggested Further Reading

◮ Crowe et al. ’Engineering Fluid Mechanics’, 9th ed. SI version, Section 10.5 - 10.7.
◮ Shrimpton, Section 5.4.

Suggested Further Study

◮ Start some chapter 12 questions. solution to 12.2 provided.
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Lecture 32: External Boundary Layers

Last Lecture we covered:
◮ Laminar and Turbulent Pipe Flow.
◮ General relationship between wall shear and pressure drop, coefficient of friction.
◮ Specific relationships for pressure drop laminar and turbulent flow
◮ Effect of roughness on turbulent flows.

This lecture we are going to cover:

◮ Boundary Layers, general properties
◮ The displacement (mass defect) thickness
◮ The momentum thickness
◮ Example : Using the momentum thickness to work out the drag on objects moving

through fluids.
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External Boundary Layers: Link to Internal Flows.

◮ At the entrance to a
pipe, a boundary
layer will develop
and diffuse the effect
of the wall boundary
into the flow.

◮ Boundary layers
from the walls will
meet and then the
flow will be fully
developed.

◮ The shear stress is initially high near the entrance due to the thinness of the
boundary layer.

◮ At fully developed conditions (by definition) the wall shear is not a function of
position.
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External Boundary Layers: General Characteristics.
◮ The boundary layer

is a thin layer close
to a solid surface
where the velocity of
the fluid falls to zero.

◮ Outside the
boundary layer the
fluid can often be
treated as inviscid.

◮ Viscous friction drag
due to shear
stresses occurs
solely in the
boundary layer.

◮ At the wall a no-slip boundary condition applies.
◮ The edge of the boundary layer is usually taken to be 99% of the free stream

(relative) velocity.
◮ Boundary layers may be laminar or turbulent.
◮ Boundary layers may separate, due to an adverse pressure gradient. Generally to

be avoided if possible.
◮ NOT fully developed - everything is changing along the length of the surface all the

time.
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External Boundary Layers: Laminar Versus Turbulent conditions.

τW = µ ∂U
∂y

∣
∣
∣
y=0

◮ Laminar initially, eventually a
transition to turbulence. Near
leading edge du/dy large
since dy small.

◮ As laminar BL thickens,
stress reduces.

◮ After transition, stress level
changes because the
turbulent near wall velocity
profile changes.

◮ Then again, the turbulent
boundary layer thickness
increases and the wall stress
reduces.

w
a
ll
sh
ea
r
st
re
ss

(τ
0
)

distance (s)

plate

pipe

s

potential core (inviscid flow)

developing flow fully developed flow

Le

edge of boundary layer

u = 0.99u0

δthin flat plate

laminar boundary layer

turbulent

boundary layer
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Boundary Layers: Properties of Laminar and Turbulent forms.

Laminar Turbulent
Friction Drag Low (good) High (bad)

Separation Resistance Low (bad) High (good)

◮ Laminar and turbulent boundary layers have different
properties.

◮ A golf ball will always produce a turbulent boundary
layer, smaller wake.

◮ Aerofoils need to ensure the flow on the upper surface
does not separate during take off and landing but needs
to reduce drag at cruise.

◮ The issue of separation and bluff bodies will be dealt
with later, along with form (pressure) drag.
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Mass and Momentum Budget of a Boundary layer.

Boundary layers are difficult to deal with - we need engineering
solutions

◮ Displacement thickness (δ∗) deals
with the mass defect.

◮ Momentum thickness (θ) deals with
the momentum defect.

u∞

δ∗

u∞

◮ Mass defects : ρ
∫∞

0 (U∞ − U)dy= ρU∞δ∗ or δ∗ =
∫∞

0 (1 − U
U∞

)dy

◮ Momentum defects : ρ
∫∞

0 U(U∞ − U)dy= ρU2
∞θ or θ =

∫∞
0

U
U∞

(1 − U
U∞

)dy

◮ Their ratio is known as the boundary layer ’shape factor’ H = δ∗

θ

◮ H = 2.59 for a laminar boundary layer and 1.3 - 1.6 for a turbulent boundary layer.

This is useful because the drag force on a plate can be defined directly, e.g. D = ρU2
∞θ.
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Example : Showing the Drag to Momentum thickness relation

Find the drag on a flat plate in a stream of fluid of velocity U∞

◮ Do a force balance on the CV, top surface a
streamline

◮ mass conservation : ρU∞h1 = ρ
∫ h2

0 Udy

◮ momentum conservation
∫ h2

0 ρU2dy− ρU2
∞h1 = −D

The flux of x-momentum out less the flux in must equal the force applied to the control
volume, in this case the negative of the drag force. D = ρU2θ
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Example Solution.

Mass Conservation : ρU∞h1 = ρ
∫ h2

0 Udy

Momentum Conservation
∫ h2

0 ρU2dy− ρU2
∞h1 = −D

◮ Step 1 : Substitute mass conservation equation into momentum conservation:

◮ ρ
∫ h2

0 U2dy− ρU∞
∫ h2

0 Udy= −D

◮ Step 2 : Divide by ρU2
∞ to give :

◮
D

ρU2
∞

=
∫ h2

0
U

U∞

−
(

U
U∞

)2

dy=
∫ h2

0
U

U∞

(

1 − U
U∞

)

dy= θ.

◮ Therefore: D = ρU2
∞θ.

And..

◮ For a length along the plate δx, δD = τWδx

◮ so in the limit, dD
dx = τW = ρU2

∞
dθ
dx .

◮ In other words dθ
dx = τW

ρU2
∞

= 2f .
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Summary and Suggested Reading.

Lecture Summary

◮ Introduced the features of laminar and turbulent external boundary layers.
◮ Introduced the concept of mass and momentum thickness of a boundary layer.
◮ Use of these to work out the friction drag.
◮ Briefly touched on separation, pressure drag.

Suggested Further Reading

◮ Crowe et al. ’Engineering Fluid Mechanics’, 9th ed. SI version, Section 9.1 - 9.5.
◮ Shrimpton, Section 5.6 - 5.7.

Suggested Further Study

◮ Start some chapter 12 questions.
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Lecture 33: Boundary Layer Separation, form (pressure) drag.

Last Lecture we covered:
◮ Introduced the features of laminar and turbulent boundary layers.
◮ Introduced the concept of mass and momentum thickness of a boundary layer.
◮ Use of these to work out the friction drag.
◮ Briefly touched on separation, pressure drag.

This lecture we are going to cover:

◮ Adverse pressure gradients and boundary layer separation.
◮ Form (pressure) and total (form and friction) drag.
◮ Streamlined and bluff body flows.
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Adverse pressure gradients.

Have examined the wall shear stress (friction drag) for:

◮ Couette flow.
◮ Laminar and turbulent pipe flows.
◮ Developing boundary layers on flat plates.

But what about the rest of
the drag

◮ Very Low Re(Stokes) flow.
◮ Low Reflow.
◮ High Reflow with a turbulent

wake but a laminar boundary
layer.

◮ Higher Reflow with a
turbulent wake and a
turbulent boundary layer.

◮ Use of roughness to ’trip’ a
laminar boundary layer.
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Pressure gradient change along a streamline going round an object.

First consider the streamline starting
upstream to a point s along the streamline:

Assuming (???) apply the Bernoulli
equation:

P∞ + 1
2ρU2

∞ = PS + 1
2ρU2

S

su0

p

pressure gradient
favourable

adverse pressure gradient

direction of force

Observations
◮ The pressure decreases as the streamline as the fluid is accelerated around the

nose section of the aerofoil (dp/ds< 0) - boundary moves into the fluid flow
direction.

◮ The pressure increases as the fluid is decelerated after the point of maximum
thickness (dp/ds> 0) - boundary moves away from the fluid flow direction.
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The Separation Condition.

Boundary layer separation occurs when the local velocity gradient at the wall tends to
zero.

Since τW = µ ∂U
∂y

∣
∣
∣
y=0

, so does the shear stress.

◮ Turbulent boundary layers better at delaying the separation point.
◮ more friction drag, but smaller wake.
◮ This is why golf balls have dimples.
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Pressure as a drag force.

Taking the example of a airfoil

◮ Both pressure and shear forces exist.
◮ They both contribute to drag and lift.
◮ Viscous drag is known as friction drag
◮ Pressure drag is known as form drag.

An elemental drag force is:

◮ Viscous Force Magnitude = τδA

◮ Pressure Force Magnitude =pδA

◮ Drag = δFx = (−pcosθ + τsinθ)δA

◮ Lift = δFy = (−psinθ − τcosθ)δA

θ

−p dA cos θ

dFp = p dA

−p dA sin θ

τ dA sin θ

τ dAτ dA cos θ

dFv = τ dA

FL

FD

note : τdAcosθ should be negative.
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Laminar/Turbulent boundary layers, Streamlining and drag.

CD = D
A( 1

2 ρU2)

Cylinder Drag Characteristic

◮ For the cylinder the linear section is
purely friction drag.

◮ As Reincreases a wake forms and
form drag component rises.

◮ Boundary layer goes turbulent on
Re≈ 105.

Other shapes

◮ Bluff bodies have CD independent of
Re as separation always occurs due to
surface discontinuity.

◮ Streamlined objects have lower CD
values, they delay separation and
reduce the size of the wake once
separation does occur.

Re = V0d
ν

or Re = V0b
ν

CD

L

b
V0

streamlines strut

(L/b = 4)

d
V0

circular
cylinder

b
V0

b
V0

flat plate

square
rod
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Reducing Drag in practice.

◮ For cars, reducing drag below 0.3 is
extremely difficult due to other
considerations

◮ For aircraft wings drag reduction must
be balanced against lift - drag
reduction depends on application.

◮ For ships friction drag dominates -
roughness is the key issue.
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Summary and Suggested Reading.

Lecture Summary

◮ Noted that boundary layer separation is caused by adverse pressure gradients.
◮ The pressure distribution around the object contributes to the momentum change

like shear stress.
◮ Form (pressure) drag can have a major impact on the total drag budget of an

object.
◮ Some objects, bluff bodies, have well defined separation points that are

independent of Re.
◮ Practically, we almost always want to reduce drag, but are usually constrained by

the object function.

Suggested Further Reading

◮ Crowe et al. ’Engineering Fluid Mechanics’, 9th ed. SI version, Section 9.6,
Chapter 11.

◮ Shrimpton, Section 5.7.

Suggested Further Study

◮ Start some chapter 12 questions. solution to 12.11 provided.
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